These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 27423617)

  • 1. BOLD fMRI complexity predicts changes in brain processes, interactions and patterns, in health and disease.
    Sokunbi MO
    J Neurol Sci; 2016 Aug; 367():347-8. PubMed ID: 27423617
    [No Abstract]   [Full Text] [Related]  

  • 2. Graph analysis of resting-state ASL perfusion MRI data: nonlinear correlations among CBF and network metrics.
    Liang X; Connelly A; Calamante F
    Neuroimage; 2014 Feb; 87():265-75. PubMed ID: 24246488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The significance of negative correlations in brain connectivity.
    Zhan L; Jenkins LM; Wolfson OE; GadElkarim JJ; Nocito K; Thompson PM; Ajilore OA; Chung MK; Leow AD
    J Comp Neurol; 2017 Oct; 525(15):3251-3265. PubMed ID: 28675490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multivariate dynamical systems-based estimation of causal brain interactions in fMRI: Group-level validation using benchmark data, neurophysiological models and human connectome project data.
    Ryali S; Chen T; Supekar K; Tu T; Kochalka J; Cai W; Menon V
    J Neurosci Methods; 2016 Aug; 268():142-53. PubMed ID: 27015792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Virtual Mouse Brain: A Computational Neuroinformatics Platform to Study Whole Mouse Brain Dynamics.
    Melozzi F; Woodman MM; Jirsa VK; Bernard C
    eNeuro; 2017; 4(3):. PubMed ID: 28664183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction to the Special Issue on Connectomics.
    Biswal B
    Brain Connect; 2019 Feb; 9(1):1. PubMed ID: 30785790
    [No Abstract]   [Full Text] [Related]  

  • 7. Topological analyses of functional connectomics: A crucial role of global signal removal, brain parcellation, and null models.
    Chen X; Liao X; Dai Z; Lin Q; Wang Z; Li K; He Y
    Hum Brain Mapp; 2018 Nov; 39(11):4545-4564. PubMed ID: 29999567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurovascular factors in resting-state functional MRI.
    Liu TT
    Neuroimage; 2013 Oct; 80():339-48. PubMed ID: 23644003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-methyl-D-aspartate receptor encephalitis mediates loss of intrinsic activity measured by functional MRI.
    Brier MR; Day GS; Snyder AZ; Tanenbaum AB; Ances BM
    J Neurol; 2016 Jun; 263(6):1083-91. PubMed ID: 27025853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selected Topics Relating to Functional MRI Study of the Brain.
    Ogawa S; Sung YW
    Keio J Med; 2019 Dec; 68(4):73-86. PubMed ID: 30971631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of spatial smoothing on functional brain networks.
    Alakörkkö T; Saarimäki H; Glerean E; Saramäki J; Korhonen O
    Eur J Neurosci; 2017 Nov; 46(9):2471-2480. PubMed ID: 28922510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Default-mode network functional connectivity is closely related to metabolic activity.
    Passow S; Specht K; Adamsen TC; Biermann M; Brekke N; Craven AR; Ersland L; Grüner R; Kleven-Madsen N; Kvernenes OH; Schwarzlmüller T; Olesen RA; Hugdahl K
    Hum Brain Mapp; 2015 Jun; 36(6):2027-38. PubMed ID: 25644693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological origin of low-frequency drift in blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI).
    Yan L; Zhuo Y; Ye Y; Xie SX; An J; Aguirre GK; Wang J
    Magn Reson Med; 2009 Apr; 61(4):819-27. PubMed ID: 19189286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic connectomics signatures for characterization and differentiation of mild cognitive impairment.
    Ou J; Xie L; Li X; Zhu D; Terry DP; Puente AN; Jiang R; Chen Y; Wang L; Shen D; Zhang J; Miller LS; Liu T
    Brain Imaging Behav; 2015 Dec; 9(4):663-77. PubMed ID: 25355371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generate the scale-free brain music from BOLD signals.
    Lu J; Guo S; Chen M; Wang W; Yang H; Guo D; Yao D
    Medicine (Baltimore); 2018 Jan; 97(2):e9628. PubMed ID: 29480872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond BOLD: optimizing functional imaging in stroke populations.
    Veldsman M; Cumming T; Brodtmann A
    Hum Brain Mapp; 2015 Apr; 36(4):1620-36. PubMed ID: 25469481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network functional connectivity and whole-brain functional connectomics to investigate cognitive decline in neurodegenerative conditions.
    Dipasquale O; Cercignani M
    Funct Neurol; 2016; 31(4):191-203. PubMed ID: 28072380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast computation of voxel-level brain connectivity maps from resting-state functional MRI using l₁-norm as approximation of Pearson's temporal correlation: proof-of-concept and example vector hardware implementation.
    Minati L; Zacà D; D'Incerti L; Jovicich J
    Med Eng Phys; 2014 Sep; 36(9):1212-7. PubMed ID: 25023958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data.
    Wu GR; Liao W; Stramaglia S; Ding JR; Chen H; Marinazzo D
    Med Image Anal; 2013 Apr; 17(3):365-74. PubMed ID: 23422254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of the hemodynamic response of fMRI Data using RBF neural network.
    Luo H; Puthusserypady S
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1371-81. PubMed ID: 17694857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.