BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2742371)

  • 1. Isolation and characterization of xylose- and xylan-utilizing anaerobic bacteria.
    Murty MV; Chandra TS
    Antonie Van Leeuwenhoek; 1989; 55(2):153-63. PubMed ID: 2742371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost.
    Sizova MV; Izquierdo JA; Panikov NS; Lynd LR
    Appl Environ Microbiol; 2011 Apr; 77(7):2282-91. PubMed ID: 21317267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xylan-degrading activity in yeasts: growth on xylose, xylan and hemicelluloses.
    Biely P; Krátký Z; Kocková-Kratochvílová A; Bauer S
    Folia Microbiol (Praha); 1978; 23(5):366-71. PubMed ID: 700524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioethanol production by a xylan fermenting thermophilic isolate Clostridium strain DBT-IOC-DC21.
    Singh N; Puri M; Tuli DK; Gupta RP; Barrow CJ; Mathur AS
    Anaerobe; 2018 Jun; 51():89-98. PubMed ID: 29729318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic and proteomic analyses of core metabolism in Clostridium termitidis CT1112 during growth on α-cellulose, xylan, cellobiose and xylose.
    Munir RI; Spicer V; Krokhin OV; Shamshurin D; Zhang X; Taillefer M; Blunt W; Cicek N; Sparling R; Levin DB
    BMC Microbiol; 2016 May; 16():91. PubMed ID: 27215540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermentation of a bacterial cellulose/xylan composite by mixed ruminal microflora: implications for the role of polysaccharide matrix interactions in plant cell wall biodegradability.
    Weimer PJ; Hackney JM; Jung HJ; Hatfield RD
    J Agric Food Chem; 2000 May; 48(5):1727-33. PubMed ID: 10820086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously.
    Xiong W; Reyes LH; Michener WE; Maness PC; Chou KJ
    Biotechnol Bioeng; 2018 Jul; 115(7):1755-1763. PubMed ID: 29537062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and Characterization of Novel Lignolytic, Cellulolytic, and Hemicellulolytic Bacteria from Wood-Feeding Termite Cryptotermes brevis.
    Tsegaye B; Balomajumder C; Roy P
    Int Microbiol; 2019 Mar; 22(1):29-39. PubMed ID: 30810928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conservation of Xylose Fermentability in Phlebia Species and Direct Fermentation of Xylan by Selected Fungi.
    Kamei I; Uchida K; Ardianti V
    Appl Biochem Biotechnol; 2020 Nov; 192(3):895-909. PubMed ID: 32607899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermophilic anaerobic bacteria which ferment hemicellulose: characterization of organisms and identification of plasmids.
    Weimer PJ; Wagner LW; Knowlton S; Ng TK
    Arch Microbiol; 1984 May; 138(1):31-6. PubMed ID: 6742954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clostridium aldrichii sp. nov., a cellulolytic mesophile inhabiting a wood-fermenting anaerobic digester.
    Yang JC; Chynoweth DP; Williams DS; Li A
    Int J Syst Bacteriol; 1990 Jul; 40(3):268-72. PubMed ID: 2397194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of plant polysaccharide- and mucin-fermenting anaerobic bacteria from human feces.
    Bayliss CE; Houston AP
    Appl Environ Microbiol; 1984 Sep; 48(3):626-32. PubMed ID: 6093693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening of facultative anaerobic bacteria utilizing D-xylose for xylitol production.
    Rangaswamy S; Agblevor FA
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):88-93. PubMed ID: 12382046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Butanol production from corn fiber xylan using Clostridium acetobutylicum.
    Qureshi N; Li XL; Hughes S; Saha BC; Cotta MA
    Biotechnol Prog; 2006; 22(3):673-80. PubMed ID: 16739948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mycelial growth and the rate of xylan, xylose and glucose consumption by strains of different species of fungi].
    Bilaĭ VI; Strizhevskaia AIa
    Mikrobiol Zh; 1977; 39(3):307-10. PubMed ID: 895572
    [No Abstract]   [Full Text] [Related]  

  • 16. Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides.
    Pason P; Kyu KL; Ratanakhanokchai K
    Appl Environ Microbiol; 2006 Apr; 72(4):2483-90. PubMed ID: 16597947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fermentation of glucose and xylose in ruminal strains of Butyrivibrio fibrisolvens.
    Marounek M; Petr O
    Lett Appl Microbiol; 1995 Oct; 21(4):272-6. PubMed ID: 7576521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Katahira S; Fujita Y; Mizuike A; Fukuda H; Kondo A
    Appl Environ Microbiol; 2004 Sep; 70(9):5407-14. PubMed ID: 15345427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caldicellulosiruptor owensensis sp. nov., an anaerobic, extremely thermophilic, xylanolytic bacterium.
    Huang CY; Patel BK; Mah RA; Baresi L
    Int J Syst Bacteriol; 1998 Jan; 48 Pt 1():91-7. PubMed ID: 9542080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mesophilic Clostridium species that produces butanol from monosaccharides and hydrogen from polysaccharides.
    Bramono SE; Lam YS; Ong SL; He J
    Bioresour Technol; 2011 Oct; 102(20):9558-63. PubMed ID: 21852120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.