BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 27423858)

  • 1. Chemical Biology Approaches for Characterization of Epigenetic Regulators.
    Barsyte-Lovejoy D; Szewczyk MM; Prinos P; Lima-Fernandes E; Ackloo S; Arrowsmith CH
    Methods Enzymol; 2016; 574():79-103. PubMed ID: 27423858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A chemical biology toolbox to study protein methyltransferases and epigenetic signaling.
    Scheer S; Ackloo S; Medina TS; Schapira M; Li F; Ward JA; Lewis AM; Northrop JP; Richardson PL; Kaniskan HÜ; Shen Y; Liu J; Smil D; McLeod D; Zepeda-Velazquez CA; Luo M; Jin J; Barsyte-Lovejoy D; Huber KVM; De Carvalho DD; Vedadi M; Zaph C; Brown PJ; Arrowsmith CH
    Nat Commun; 2019 Jan; 10(1):19. PubMed ID: 30604761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel approach applying a chemical biology strategy in phenotypic screening reveals pathway-selective regulators of histone 3 K27 tri-methylation.
    Liu Y; Platchek M; Kement B; Bee WT; Truong M; Zeng X; Hung S; Lin H; Morrow D; Kallal LA; Xie Q; Agarwal P; Pope AJ; Wu Z
    Mol Biosyst; 2014 Feb; 10(2):251-7. PubMed ID: 24257700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vitro Assays for RNA Methyltransferase Activity.
    Haag S; Sloan KE; Höbartner C; Bohnsack MT
    Methods Mol Biol; 2017; 1562():259-268. PubMed ID: 28349466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives.
    Song Y; Wu F; Wu J
    J Hematol Oncol; 2016 Jun; 9(1):49. PubMed ID: 27316347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. dbHiMo: a web-based epigenomics platform for histone-modifying enzymes.
    Choi J; Kim KT; Huh A; Kwon S; Hong C; Asiegbu FO; Jeon J; Lee YH
    Database (Oxford); 2015; 2015():bav052. PubMed ID: 26055100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laboratory methods to decipher epigenetic signatures: a comparative review.
    Halabian R; Valizadeh Arshad ; Ahmadi A; Saeedi P; Azimzadeh Jamalkandi S; Alivand MR
    Cell Mol Biol Lett; 2021 Nov; 26(1):46. PubMed ID: 34763654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical and biochemical approaches in the study of histone methylation and demethylation.
    Li KK; Luo C; Wang D; Jiang H; Zheng YG
    Med Res Rev; 2012 Jul; 32(4):815-67. PubMed ID: 22777714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and Assays of Inhibitors of Methyltransferases.
    Cai XC; Kapilashrami K; Luo M
    Methods Enzymol; 2016; 574():245-308. PubMed ID: 27423865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Histone modification enzymes].
    Sasaki K; Yoshida M
    Tanpakushitsu Kakusan Koso; 2006 Nov; 51(14 Suppl):2069-75. PubMed ID: 17471912
    [No Abstract]   [Full Text] [Related]  

  • 11. Leading approaches in synthetic epigenetics for novel therapeutic strategies.
    Yamatsugu K; Kawashima SA; Kanai M
    Curr Opin Chem Biol; 2018 Oct; 46():10-17. PubMed ID: 29631088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening for compounds that modulate epigenetic regulation of the transcriptome: an overview.
    Eglen RM; Reisine T
    J Biomol Screen; 2011 Dec; 16(10):1137-52. PubMed ID: 22002420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate Specificity Profiling of Histone-Modifying Enzymes by Peptide Microarray.
    Cornett EM; Dickson BM; Vaughan RM; Krishnan S; Trievel RC; Strahl BD; Rothbart SB
    Methods Enzymol; 2016; 574():31-52. PubMed ID: 27423856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnosis and treatment of lymphomas in the era of epigenetics.
    Chebly A; Chouery E; Ropio J; Kourie HR; Beylot-Barry M; Merlio JP; Tomb R; Chevret E
    Blood Rev; 2021 Jul; 48():100782. PubMed ID: 33229141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic regulation of development by histone lysine methylation.
    Dambacher S; Hahn M; Schotta G
    Heredity (Edinb); 2010 Jul; 105(1):24-37. PubMed ID: 20442736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaplasma phagocytophilum increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector Ixodes scapularis.
    Cabezas-Cruz A; Alberdi P; Ayllón N; Valdés JJ; Pierce R; Villar M; de la Fuente J
    Epigenetics; 2016 Apr; 11(4):303-19. PubMed ID: 27019326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing Chromatin-modifying Enzymes with Chemical Tools.
    Fischle W; Schwarzer D
    ACS Chem Biol; 2016 Mar; 11(3):689-705. PubMed ID: 26845102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ chromatin interactomics using a chemical bait and trap approach.
    Burton AJ; Haugbro M; Gates LA; Bagert JD; Allis CD; Muir TW
    Nat Chem; 2020 Jun; 12(6):520-527. PubMed ID: 32472103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications.
    Desaulniers D; Vasseur P; Jacobs A; Aguila MC; Ertych N; Jacobs MN
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical Epigenetics: The Impact of Chemical and Chemical Biology Techniques on Bromodomain Target Validation.
    Schiedel M; Moroglu M; Ascough DMH; Chamberlain AER; Kamps JJAG; Sekirnik AR; Conway SJ
    Angew Chem Int Ed Engl; 2019 Dec; 58(50):17930-17952. PubMed ID: 30633431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.