These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 27424274)

  • 41. Multisensory integration in the superior colliculus requires synergy among corticocollicular inputs.
    Alvarado JC; Stanford TR; Rowland BA; Vaughan JW; Stein BE
    J Neurosci; 2009 May; 29(20):6580-92. PubMed ID: 19458228
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The superior colliculus is sensitive to gestalt-like stimulus configuration in hemispherectomy patients.
    Georgy L; Celeghin A; Marzi CA; Tamietto M; Ptito A
    Cortex; 2016 Aug; 81():151-61. PubMed ID: 27208816
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A biologically inspired neurocomputational model for audiovisual integration and causal inference.
    Cuppini C; Shams L; Magosso E; Ursino M
    Eur J Neurosci; 2017 Nov; 46(9):2481-2498. PubMed ID: 28949035
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neuronal mechanisms of motion detection underlying blindsight assessed by functional magnetic resonance imaging (fMRI).
    Tran A; MacLean MW; Hadid V; Lazzouni L; Nguyen DK; Tremblay J; Dehaes M; Lepore F
    Neuropsychologia; 2019 May; 128():187-197. PubMed ID: 30825453
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Being First Matters: Topographical Representational Similarity Analysis of ERP Signals Reveals Separate Networks for Audiovisual Temporal Binding Depending on the Leading Sense.
    Cecere R; Gross J; Willis A; Thut G
    J Neurosci; 2017 May; 37(21):5274-5287. PubMed ID: 28450537
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Independent mechanisms for ventriloquism and multisensory integration as revealed by theta-burst stimulation.
    Bertini C; Leo F; Avenanti A; Làdavas E
    Eur J Neurosci; 2010 May; 31(10):1791-9. PubMed ID: 20584183
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neural bases of visual processing of moving and stationary stimuli presented to the blind hemifield of hemianopic patients.
    Pedersini CA; Lingnau A; Cardobi N; Sanchez-Lopez J; Savazzi S; Marzi CA
    Neuropsychologia; 2020 Apr; 141():107430. PubMed ID: 32173624
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multisensory response modulation in the superficial layers of the superior colliculus.
    Ghose D; Maier A; Nidiffer A; Wallace MT
    J Neurosci; 2014 Mar; 34(12):4332-44. PubMed ID: 24647954
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Visual search and line bisection in hemianopia: computational modelling of cortical compensatory mechanisms and comparison with hemineglect.
    Lanyon LJ; Barton JJ
    PLoS One; 2013; 8(2):e54919. PubMed ID: 23390506
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Two cortical areas mediate multisensory integration in superior colliculus neurons.
    Jiang W; Wallace MT; Jiang H; Vaughan JW; Stein BE
    J Neurophysiol; 2001 Feb; 85(2):506-22. PubMed ID: 11160489
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Superior colliculus lesions preferentially disrupt multisensory orientation.
    Burnett LR; Stein BE; Chaponis D; Wallace MT
    Neuroscience; 2004; 124(3):535-47. PubMed ID: 14980725
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Early and late beta-band power reflect audiovisual perception in the McGurk illusion.
    Roa Romero Y; Senkowski D; Keil J
    J Neurophysiol; 2015 Apr; 113(7):2342-50. PubMed ID: 25568160
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Audio-Visual Stimulation Improves Visual Search Abilities in Hemianopia due to Childhood Acquired Brain Lesions.
    Tinelli F; Purpura G; Cioni G
    Multisens Res; 2015; 28(1-2):153-71. PubMed ID: 26152056
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Visual enhancement of the information representation in auditory cortex.
    Kayser C; Logothetis NK; Panzeri S
    Curr Biol; 2010 Jan; 20(1):19-24. PubMed ID: 20036538
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stimulus-dependent differences in cortical versus subcortical contributions to visual detection in mice.
    Cone JJ; Mitchell AO; Parker RK; Maunsell JHR
    Curr Biol; 2024 May; 34(9):1940-1952.e5. PubMed ID: 38640924
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Magnetoencephalographic evidence for non-geniculostriate visual input to human cortical area V5.
    Holliday IE; Anderson SJ; Harding GF
    Neuropsychologia; 1997 Aug; 35(8):1139-46. PubMed ID: 9256379
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neural Correlates of Multisensory Detection Behavior: Comparison of Primary and Higher-Order Visual Cortex.
    Meijer GT; Marchesi P; Mejias JF; Montijn JS; Lansink CS; Pennartz CMA
    Cell Rep; 2020 May; 31(6):107636. PubMed ID: 32402272
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Age-related audiovisual interactions in the superior colliculus of the rat.
    Costa M; Piché M; Lepore F; Guillemot JP
    Neuroscience; 2016 Apr; 320():19-29. PubMed ID: 26844390
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Indirect pathway between the primary auditory and visual cortices through layer V pyramidal neurons in V2L in mouse and the effects of bilateral enucleation.
    Laramée ME; Kurotani T; Rockland KS; Bronchti G; Boire D
    Eur J Neurosci; 2011 Jul; 34(1):65-78. PubMed ID: 21676038
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Alterations to multisensory and unisensory integration by stimulus competition.
    Pluta SR; Rowland BA; Stanford TR; Stein BE
    J Neurophysiol; 2011 Dec; 106(6):3091-101. PubMed ID: 21957224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.