BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 27424662)

  • 1. The role of CYP26 enzymes in retinoic acid clearance.
    Thatcher JE; Isoherranen N
    Expert Opin Drug Metab Toxicol; 2009 Aug; 5(8):875-86. PubMed ID: 19519282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinoic acid metabolism in cancer: potential feasibility of retinoic acid metabolism blocking therapy.
    Osanai M; Takasawa A; Takasawa K; Kyuno D; Ono Y; Magara K
    Med Mol Morphol; 2023 Mar; 56(1):1-10. PubMed ID: 36592231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First chemical feature-based pharmacophore modeling of potent retinoidal retinoic acid metabolism blocking agents (RAMBAs): identification of novel RAMBA scaffolds.
    Purushottamachar P; Patel JB; Gediya LK; Clement OO; Njar VC
    Eur J Med Chem; 2012 Jan; 47(1):412-23. PubMed ID: 22130607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CYP26B1-related disorder: expanding the ends of the spectrum through clinical and molecular evidence.
    Silveira KC; Fonseca IC; Oborn C; Wengryn P; Ghafoor S; Beke A; Dreseris ES; Wong C; Iacovone A; Soltys CL; Babul-Hirji R; Artigalas O; Antolini-Tavares A; Gingras AC; Campos E; Cavalcanti DP; Kannu P
    Hum Genet; 2023 Nov; 142(11):1571-1586. PubMed ID: 37755482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of a fused grid-based CYP2C8-Template system and the application.
    Yamazoe Y; Yamamura Y; Yoshinari K
    Drug Metab Pharmacokinet; 2024 Apr; 55():100492. PubMed ID: 38609777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SRM-based measurements of proprotein convertase subtilisin/kexin type 9 and lipoprotein(a) kinetics in nonhuman primate serum.
    Xie F; Emery MG; Gibbs JP; Rock DA; Rock BM
    Bioanalysis; 2016 Dec; 8(24):2551-2563. PubMed ID: 27884075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wnt/β-Catenin Promotes the Osteoblastic Potential of BMP9 Through Down-Regulating Cyp26b1 in Mesenchymal Stem Cells.
    Yao XT; Li PP; Liu J; Yang YY; Luo ZL; Jiang HT; He WG; Luo HH; Deng YX; He BC
    Tissue Eng Regen Med; 2023 Aug; 20(5):705-723. PubMed ID: 37010733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Insight into the Metabolism of 2,5-Disubstituted Monotetrazole Bearing Bisphenol Structures: Emerging Bisphenol A Structural Congeners.
    Gadgoli UB; Sunil Kumar YC; Kumar D
    Molecules; 2023 Feb; 28(3):. PubMed ID: 36771130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational model for fetal skeletal defects potentially linked to disruption of retinoic acid signaling.
    Pierro JD; Ahir BK; Baker NC; Kleinstreuer NC; Xia M; Knudsen TB
    Front Pharmacol; 2022; 13():971296. PubMed ID: 36172177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying candidate reference chemicals for in vitro testing of the retinoid pathway for predictive developmental toxicity.
    Baker NC; Pierro JD; Taylor LW; Knudsen TB
    ALTEX; 2023; 40(2):217–236. PubMed ID: 35796328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divergent Roles of CYP26B1 and Endogenous Retinoic Acid in Mouse Fetal Gonads.
    Bellutti L; Abby E; Tourpin S; Messiaen S; Moison D; Trautmann E; Guerquin MJ; Rouiller-Fabre V; Habert R; Livera G
    Biomolecules; 2019 Sep; 9(10):. PubMed ID: 31561560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical and physiological importance of the CYP26 retinoic acid hydroxylases.
    Isoherranen N; Zhong G
    Pharmacol Ther; 2019 Dec; 204():107400. PubMed ID: 31419517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CYP26C1 Is a Hydroxylase of Multiple Active Retinoids and Interacts with Cellular Retinoic Acid Binding Proteins.
    Zhong G; Ortiz D; Zelter A; Nath A; Isoherranen N
    Mol Pharmacol; 2018 May; 93(5):489-503. PubMed ID: 29476041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the ligand binding site of CYP2C8 with CYP26A1 and CYP26B1: a structural basis for the identification of new inhibitors of the retinoic acid hydroxylases.
    Foti RS; Diaz P; Douguet D
    J Enzyme Inhib Med Chem; 2016; 31(sup2):148-161. PubMed ID: 27424662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Tazarotenic Acid as the First Xenobiotic Substrate of Human Retinoic Acid Hydroxylase CYP26A1 and CYP26B1.
    Foti RS; Isoherranen N; Zelter A; Dickmann LJ; Buttrick BR; Diaz P; Douguet D
    J Pharmacol Exp Ther; 2016 May; 357(2):281-92. PubMed ID: 26937021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of the
    Stevison F; Hogarth C; Tripathy S; Kent T; Isoherranen N
    Drug Metab Dispos; 2017 Jul; 45(7):846-854. PubMed ID: 28446509
    [No Abstract]   [Full Text] [Related]  

  • 17. Molecular recognition of CYP26A1 binding pockets and structure-activity relationship studies for design of potent and selective retinoic acid metabolism blocking agents.
    Sun B; Song S; Hao CZ; Huang WX; Liu CC; Xie HL; Lin B; Cheng MS; Zhao DM
    J Mol Graph Model; 2015 Mar; 56():10-9. PubMed ID: 25541526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic potential of the inhibition of the retinoic acid hydroxylases CYP26A1 and CYP26B1 by xenobiotics.
    Nelson CH; Buttrick BR; Isoherranen N
    Curr Top Med Chem; 2013; 13(12):1402-28. PubMed ID: 23688132
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.