BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 27424749)

  • 1. Kinetic Analysis of Plant SUMO Conjugation Machinery.
    Castaño-Miquel L; Lois LM
    Methods Mol Biol; 2016; 1450():107-23. PubMed ID: 27424749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic Analysis of Plant SUMO Conjugation Machinery.
    Castaño-Miquel L; Lois LM
    Methods Mol Biol; 2023; 2581():93-108. PubMed ID: 36413313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversification of SUMO-activating enzyme in Arabidopsis: implications in SUMO conjugation.
    Castaño-Miquel L; Seguí J; Manrique S; Teixeira I; Carretero-Paulet L; Atencio F; Lois LM
    Mol Plant; 2013 Sep; 6(5):1646-60. PubMed ID: 23482370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SUMO Chain Formation by Plant Enzymes.
    Tomanov K; Ziba I; Bachmair A
    Methods Mol Biol; 2016; 1450():97-105. PubMed ID: 27424748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SUMOylation Inhibition Mediated by Disruption of SUMO E1-E2 Interactions Confers Plant Susceptibility to Necrotrophic Fungal Pathogens.
    Castaño-Miquel L; Mas A; Teixeira I; Seguí J; Perearnau A; Thampi BN; Schapire AL; Rodrigo N; La Verde G; Manrique S; Coca M; Lois LM
    Mol Plant; 2017 May; 10(5):709-720. PubMed ID: 28343913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinctive properties of Arabidopsis SUMO paralogues support the in vivo predominant role of AtSUMO1/2 isoforms.
    Castaño-Miquel L; Seguí J; Lois LM
    Biochem J; 2011 Jun; 436(3):581-90. PubMed ID: 21413927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Analysis of Subcellular Distribution of the SUMO Conjugation System by Confocal Microscopy Imaging.
    Mas A; Amenós M; Lois LM
    Methods Mol Biol; 2016; 1450():135-50. PubMed ID: 27424751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insights into SUMO E1-E2 interactions in Arabidopsis uncovers a distinctive platform for securing SUMO conjugation specificity across evolution.
    Liu B; Lois LM; Reverter D
    Biochem J; 2019 Jul; 476(14):2127-2139. PubMed ID: 31292170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SUMO Conjugation and SUMO Chain Formation by Plant Enzymes.
    Tomanov K; Julian J; Ziba I; Bachmair A
    Methods Mol Biol; 2023; 2581():83-92. PubMed ID: 36413312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstitution of Arabidopsis thaliana SUMO pathways in E. coli: functional evaluation of SUMO machinery proteins and mapping of SUMOylation sites by mass spectrometry.
    Okada S; Nagabuchi M; Takamura Y; Nakagawa T; Shinmyozu K; Nakayama J; Tanaka K
    Plant Cell Physiol; 2009 Jun; 50(6):1049-61. PubMed ID: 19376783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential.
    Saracco SA; Miller MJ; Kurepa J; Vierstra RD
    Plant Physiol; 2007 Sep; 145(1):119-34. PubMed ID: 17644626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SUMO chain formation relies on the amino-terminal region of SUMO-conjugating enzyme and has dedicated substrates in plants.
    Tomanov K; Nehlin L; Ziba I; Bachmair A
    Biochem J; 2018 Jan; 475(1):61-74. PubMed ID: 29133528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1.
    Lois LM; Lima CD
    EMBO J; 2005 Feb; 24(3):439-51. PubMed ID: 15660128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SUMO E3 ligases are expressed in the retina and regulate SUMOylation of the metabotropic glutamate receptor 8b.
    Dütting E; Schröder-Kress N; Sticht H; Enz R
    Biochem J; 2011 Apr; 435(2):365-71. PubMed ID: 21288202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein sumoylation and phosphorylation intersect in Arabidopsis signaling.
    Nukarinen E; Tomanov K; Ziba I; Weckwerth W; Bachmair A
    Plant J; 2017 Aug; 91(3):505-517. PubMed ID: 28419593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SUMO conjugation in plants.
    Novatchkova M; Budhiraja R; Coupland G; Eisenhaber F; Bachmair A
    Planta; 2004 Nov; 220(1):1-8. PubMed ID: 15449058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrates related to chromatin and to RNA-dependent processes are modified by Arabidopsis SUMO isoforms that differ in a conserved residue with influence on desumoylation.
    Budhiraja R; Hermkes R; Müller S; Schmidt J; Colby T; Panigrahi K; Coupland G; Bachmair A
    Plant Physiol; 2009 Mar; 149(3):1529-40. PubMed ID: 19151129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of SUMO1 and ATP affinity for the SUMO E1by quantitative FRET technology.
    Wiryawan H; Dan K; Etuale M; Shen Y; Liao J
    Biotechnol Bioeng; 2015 Apr; 112(4):652-8. PubMed ID: 25333792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR assignments of ubiquitin fold domain (UFD) in SUMO-activating enzyme subunit 2 from rice.
    Suzuki R; Tsuchiya W; Shindo H; Yamazaki T
    Biomol NMR Assign; 2011 Oct; 5(2):245-8. PubMed ID: 21523438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SIZ1-Dependent Post-Translational Modification by SUMO Modulates Sugar Signaling and Metabolism in Arabidopsis thaliana.
    Castro PH; Verde N; Lourenço T; Magalhães AP; Tavares RM; Bejarano ER; Azevedo H
    Plant Cell Physiol; 2015 Dec; 56(12):2297-311. PubMed ID: 26468507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.