BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 27424749)

  • 21. Evolution of a signalling system that incorporates both redundancy and diversity: Arabidopsis SUMOylation.
    Chosed R; Mukherjee S; Lois LM; Orth K
    Biochem J; 2006 Sep; 398(3):521-9. PubMed ID: 16740136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Viral control of the SUMO pathway: Gam1, a model system.
    Chiocca S
    Biochem Soc Trans; 2007 Dec; 35(Pt 6):1419-21. PubMed ID: 18031235
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of two residues proximal to the active site of Ubc9 in substrate recognition by the Ubc9.SUMO-1 thiolester complex.
    Tatham MH; Chen Y; Hay RT
    Biochemistry; 2003 Mar; 42(11):3168-79. PubMed ID: 12641448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diversity of the SUMOylation machinery in plants.
    Lois LM
    Biochem Soc Trans; 2010 Feb; 38(Pt 1):60-4. PubMed ID: 20074036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SUMO-conjugating and SUMO-deconjugating enzymes from Arabidopsis.
    Colby T; Matthäi A; Boeckelmann A; Stuible HP
    Plant Physiol; 2006 Sep; 142(1):318-32. PubMed ID: 16920872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A role for S-nitrosylation of the SUMO-conjugating enzyme SCE1 in plant immunity.
    Skelly MJ; Malik SI; Le Bihan T; Bo Y; Jiang J; Spoel SH; Loake GJ
    Proc Natl Acad Sci U S A; 2019 Aug; 116(34):17090-17095. PubMed ID: 31371496
    [TBL] [Abstract][Full Text] [Related]  

  • 27.
    Rytz TC; Feng J; Barros JAS; Vierstra RD
    Plant Direct; 2023 Jul; 7(7):e506. PubMed ID: 37465357
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antagonism between SUMO1/2 and SUMO3 regulates SUMO conjugate levels and fine-tunes immunity.
    Ingole KD; Kasera M; van den Burg HA; Bhattacharjee S
    J Exp Bot; 2021 Sep; 72(18):6640-6658. PubMed ID: 34145454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arabidopsis TCP Transcription Factors Interact with the SUMO Conjugating Machinery in Nuclear Foci.
    Mazur MJ; Spears BJ; Djajasaputra A; van der Gragt M; Vlachakis G; Beerens B; Gassmann W; van den Burg HA
    Front Plant Sci; 2017; 8():2043. PubMed ID: 29250092
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SUMOylation: re-wiring the plant nucleus during stress and development.
    Augustine RC; Vierstra RD
    Curr Opin Plant Biol; 2018 Oct; 45(Pt A):143-154. PubMed ID: 30014889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TRIM5α is a SUMO substrate.
    Dutrieux J; Portilho DM; Arhel NJ; Hazan U; Nisole S
    Retrovirology; 2015 Mar; 12():28. PubMed ID: 25880753
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systematic determinations of SUMOylation activation intermediates and dynamics by a sensitive and quantitative FRET assay.
    Song Y; Liao J
    Mol Biosyst; 2012 Jun; 8(6):1723-9. PubMed ID: 22466055
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolution of SUMO Function and Chain Formation in Insects.
    Ureña E; Pirone L; Chafino S; Pérez C; Sutherland JD; Lang V; Rodriguez MS; Lopitz-Otsoa F; Blanco FJ; Barrio R; Martín D
    Mol Biol Evol; 2016 Feb; 33(2):568-84. PubMed ID: 26538142
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of sumoylation activating enzyme 1 inhibitors by structure-based virtual screening.
    Kumar A; Ito A; Hirohama M; Yoshida M; Zhang KY
    J Chem Inf Model; 2013 Apr; 53(4):809-20. PubMed ID: 23544417
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional characterization of the SIZ/PIAS-type SUMO E3 ligases, OsSIZ1 and OsSIZ2 in rice.
    Park HC; Kim H; Koo SC; Park HJ; Cheong MS; Hong H; Baek D; Chung WS; Kim DH; Bressan RA; Lee SY; Bohnert HJ; Yun DJ
    Plant Cell Environ; 2010 Nov; 33(11):1923-34. PubMed ID: 20561251
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SUMO proteases ULP1c and ULP1d are required for development and osmotic stress responses in Arabidopsis thaliana.
    Castro PH; Couto D; Freitas S; Verde N; Macho AP; Huguet S; Botella MA; Ruiz-Albert J; Tavares RM; Bejarano ER; Azevedo H
    Plant Mol Biol; 2016 Sep; 92(1-2):143-59. PubMed ID: 27325215
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Performing in vitro sumoylation reactions using recombinant enzymes.
    Werner A; Moutty MC; Möller U; Melchior F
    Methods Mol Biol; 2009; 497():187-99. PubMed ID: 19107418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic characterization of T-DNA insertions in the genome of the Arabidopsis thaliana sumo1/2 knock-down line.
    Hammoudi V; Vlachakis G; de Jonge R; Breit TM; van den Burg HA
    Plant Signal Behav; 2017 Mar; 12(3):e1293216. PubMed ID: 28267405
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A mechanism for inhibiting the SUMO pathway.
    Boggio R; Colombo R; Hay RT; Draetta GF; Chiocca S
    Mol Cell; 2004 Nov; 16(4):549-61. PubMed ID: 15546615
    [TBL] [Abstract][Full Text] [Related]  

  • 40. E3 SUMO ligase AtSIZ1 positively regulates SLY1-mediated GA signalling and plant development.
    Kim SI; Park BS; Kim DY; Yeu SY; Song SI; Song JT; Seo HS
    Biochem J; 2015 Jul; 469(2):299-314. PubMed ID: 26008766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.