BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 27424845)

  • 1. Bacterial sensitivity assessment of multifunctional polymeric coatings for airway stents.
    Goodfriend AC; Welch TR; Thomas CE; Nguyen KT; Johnson RF; Forbess JM
    J Biomed Mater Res B Appl Biomater; 2017 Oct; 105(7):2153-2161. PubMed ID: 27424845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug loaded nanoparticle coating on totally bioresorbable PLLA stents to prevent in-stent restenosis.
    Zhao J; Mo Z; Guo F; Shi D; Han QQ; Liu Q
    J Biomed Mater Res B Appl Biomater; 2018 Jan; 106(1):88-95. PubMed ID: 27875036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(gadodiamide fumaric acid): A Bioresorbable, Radiopaque, and MRI-Visible Polymer for Biomedical Applications.
    Goodfriend AC; Welch TR; Nguyen KT; Wang J; Johnson RF; Nugent A; Forbess JM
    ACS Biomater Sci Eng; 2015 Aug; 1(8):677-684. PubMed ID: 33435091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface patterning of a novel PEG-functionalized poly-l-lactide polymer to improve its biocompatibility: Applications to bioresorbable vascular stents.
    Pacharra S; Ortiz R; McMahon S; Wang W; Viebahn R; Salber J; Quintana I
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):624-634. PubMed ID: 30091510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of a novel biodegradable antimicrobial polymer.
    Woo GL; Mittelman MW; Santerre JP
    Biomaterials; 2000 Jun; 21(12):1235-46. PubMed ID: 10811305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional printing of poly(glycerol sebacate fumarate) gadodiamide-poly(ethylene glycol) diacrylate structures and characterization of mechanical properties for soft tissue applications.
    Ravi P; Wright J; Shiakolas PS; Welch TR
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):664-671. PubMed ID: 30096218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping intermediate degradation products of poly(lactic-co-glycolic acid) in vitro.
    Li J; Nemes P; Guo J
    J Biomed Mater Res B Appl Biomater; 2018 Apr; 106(3):1129-1137. PubMed ID: 28514061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of Polymeric Prodrug Paclitaxel-Poly(lactic acid)-b-Polyisobutylene and Its Application in Coatings of a Drug Eluting Stent.
    Ren K; Zhang M; He J; Wu Y; Ni P
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11263-71. PubMed ID: 25955234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug-eluting bioresorbable stents for various applications.
    Zilberman M; Eberhart RC
    Annu Rev Biomed Eng; 2006; 8():153-80. PubMed ID: 16834554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymers, drug release, and drug-eluting stents.
    Commandeur S; van Beusekom HM; van der Giessen WJ
    J Interv Cardiol; 2006 Dec; 19(6):500-6. PubMed ID: 17107364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable nasal stents (MgF
    Durisin M; Reifenrath J; Weber CM; Eifler R; Maier HJ; Lenarz T; Seitz JM
    J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):350-365. PubMed ID: 26511430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties and in vitro degradation of bioresorbable fibers and expandable fiber-based stents.
    Zilberman M; Nelson KD; Eberhart RC
    J Biomed Mater Res B Appl Biomater; 2005 Aug; 74(2):792-9. PubMed ID: 15991233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of magnesium alloys for use as an intraluminal tracheal for pediatric applications in a rat tracheal bypass model.
    Luffy SA; Wu J; Kumta PN; Gilbert TW
    J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1844-1853. PubMed ID: 30521126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation, degradation and in vitro release of ciprofloxacin-eluting ureteral stents for potential antibacterial application.
    Ma X; Xiao Y; Xu H; Lei K; Lang M
    Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():92-99. PubMed ID: 27207042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized polymer coating for magnesium alloy-based bioresorbable scaffolds for long-lasting drug release and corrosion resistance.
    Xu W; Yagoshi K; Koga Y; Sasaki M; Niidome T
    Colloids Surf B Biointerfaces; 2018 Mar; 163():100-106. PubMed ID: 29284158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug eluting stents based on Poly(ethylene carbonate): optimization of the stent coating process.
    Bege N; Steinmüller SO; Kalinowski M; Reul R; Klaus S; Petersen H; Curdy C; Janek J; Kissel T
    Eur J Pharm Biopharm; 2012 Apr; 80(3):562-70. PubMed ID: 22209978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro study of drug-eluting stent coatings based on poly(L-lactide) incorporating cyclosporine A - drug release, polymer degradation and mechanical integrity.
    Sternberg K; Kramer S; Nischan C; Grabow N; Langer T; Hennighausen G; Schmitz KP
    J Mater Sci Mater Med; 2007 Jul; 18(7):1423-32. PubMed ID: 17387586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-vivo biocompatibility evaluation of stents coated with a new biodegradable elastomeric and functional polymer.
    Lee SH; Szinai I; Carpenter K; Katsarava R; Jokhadze G; Chu CC; Huang Y; Verbeken E; Bramwell O; De Scheerder I; Hong MK
    Coron Artery Dis; 2002 Jun; 13(4):237-41. PubMed ID: 12193851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Still room for improvement: Preclinical and bench testing of a thin-strut cobalt-chromium bare-metal stent with passive coating.
    Wittchow E; Hartwig S
    J Biomed Mater Res B Appl Biomater; 2017 Aug; 105(6):1612-1621. PubMed ID: 27149341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro study of drug-loaded bioresorbable films and support structures.
    Zilberman M; Eberhart RC; Schwade ND
    J Biomater Sci Polym Ed; 2002; 13(11):1221-40. PubMed ID: 12518801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.