BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 27425180)

  • 21. Feasibility of large-scale phosphoproteomics with higher energy collisional dissociation fragmentation.
    Nagaraj N; D'Souza RC; Cox J; Olsen JV; Mann M
    J Proteome Res; 2010 Dec; 9(12):6786-94. PubMed ID: 20873877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultraviolet photodissociation mass spectrometry of bis-aryl hydrazone conjugated peptides.
    Gardner MW; Brodbelt JS
    Anal Chem; 2009 Jun; 81(12):4864-72. PubMed ID: 19449860
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multimodal Tandem Mass Spectrometry Techniques for the Analysis of Phosphopeptides.
    Paris J; Theisen A; Marzullo BP; Haris A; Morgan TE; Barrow MP; O'Hara J; O'Connor PB
    J Am Soc Mass Spectrom; 2022 Jul; 33(7):1126-1133. PubMed ID: 35604791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expanding the Scope of Cross-Link Identifications by Incorporating Collisional Activated Dissociation and Ultraviolet Photodissociation Methods.
    Cammarata MB; Macias LA; Rosenberg J; Bolufer A; Brodbelt JS
    Anal Chem; 2018 Jun; 90(11):6385-6389. PubMed ID: 29722964
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimized fragmentation conditions for iTRAQ-labeled phosphopeptides.
    Linke D; Hung CW; Cassidy L; Tholey A
    J Proteome Res; 2013 Jun; 12(6):2755-63. PubMed ID: 23668714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Ups and Downs of Repeated Cleavage and Internal Fragment Production in Top-Down Proteomics.
    Lyon YA; Riggs D; Fornelli L; Compton PD; Julian RR
    J Am Soc Mass Spectrom; 2018 Jan; 29(1):150-157. PubMed ID: 29038993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultraviolet, Infrared, and High-Low Energy Photodissociation of Post-Translationally Modified Peptides.
    Halim MA; MacAleese L; Lemoine J; Antoine R; Dugourd P; Girod M
    J Am Soc Mass Spectrom; 2018 Feb; 29(2):270-283. PubMed ID: 28980177
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improving the performance of proteomic analysis via VAILase cleavage and 193-nm ultraviolet photodissociation.
    Sun B; Liu Z; Fang X; Wang X; Lai C; Liu L; Xiao C; Jiang Y; Wang F
    Anal Chim Acta; 2021 Apr; 1155():338340. PubMed ID: 33766312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of Internal Fragments on Top-Down Analysis of Intact Proteins by 193 nm UVPD.
    Dunham SD; Wei B; Lantz C; Loo JA; Brodbelt JS
    J Proteome Res; 2023 Jan; 22(1):170-181. PubMed ID: 36503236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MS/MS simplification by 355 nm ultraviolet photodissociation of chromophore-derivatized peptides in a quadrupole ion trap.
    Wilson JJ; Brodbelt JS
    Anal Chem; 2007 Oct; 79(20):7883-92. PubMed ID: 17845006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of green fluorescent proteins by 193 nm ultraviolet photodissociation mass spectrometry.
    Cannon JR; Kluwe C; Ellington A; Brodbelt JS
    Proteomics; 2014 May; 14(10):1165-73. PubMed ID: 24596159
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pinpointing phosphorylation sites: Quantitative filtering and a novel site-specific x-ion fragment.
    Kelstrup CD; Hekmat O; Francavilla C; Olsen JV
    J Proteome Res; 2011 Jul; 10(7):2937-48. PubMed ID: 21526838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extensive Characterization of Heavily Modified Histone Tails by 193 nm Ultraviolet Photodissociation Mass Spectrometry via a Middle-Down Strategy.
    Greer SM; Sidoli S; Coradin M; Schack Jespersen M; Schwämmle V; Jensen ON; Garcia BA; Brodbelt JS
    Anal Chem; 2018 Sep; 90(17):10425-10433. PubMed ID: 30063333
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrating titania enrichment, iTRAQ labeling, and Orbitrap CID-HCD for global identification and quantitative analysis of phosphopeptides.
    Wu J; Warren P; Shakey Q; Sousa E; Hill A; Ryan TE; He T
    Proteomics; 2010 Jun; 10(11):2224-34. PubMed ID: 20340162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hybridizing ultraviolet photodissociation with electron transfer dissociation for intact protein characterization.
    Cannon JR; Holden DD; Brodbelt JS
    Anal Chem; 2014 Nov; 86(21):10970-7. PubMed ID: 25270663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tandem-trapped ion mobility spectrometry/mass spectrometry coupled with ultraviolet photodissociation.
    Liu FC; Ridgeway ME; Winfred JSRV; Polfer NC; Lee J; Theisen A; Wootton CA; Park MA; Bleiholder C
    Rapid Commun Mass Spectrom; 2021 Nov; 35(22):e9192. PubMed ID: 34498312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultraviolet photodissociation and collision-induced dissociation for qualitative/quantitative analysis of low molecular weight compounds by liquid chromatography-mass spectrometry.
    Giraud R; Le Blanc YJC; Guna M; Hopfgartner G
    Anal Bioanal Chem; 2023 Dec; 415(29-30):7117-7126. PubMed ID: 37803134
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Systematic comparison of ultraviolet photodissociation and electron transfer dissociation for peptide anion characterization.
    Shaw JB; Madsen JA; Xu H; Brodbelt JS
    J Am Soc Mass Spectrom; 2012 Oct; 23(10):1707-15. PubMed ID: 22895858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photodissociation of conformer-selected ubiquitin ions reveals site-specific cis/trans isomerization of proline peptide bonds.
    Warnke S; Baldauf C; Bowers MT; Pagel K; von Helden G
    J Am Chem Soc; 2014 Jul; 136(29):10308-14. PubMed ID: 25007274
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Confident site localization using a simulated phosphopeptide spectral library.
    Suni V; Imanishi SY; Maiolica A; Aebersold R; Corthals GL
    J Proteome Res; 2015 May; 14(5):2348-59. PubMed ID: 25774671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.