These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 27425200)

  • 41. Bioinspired multicolour carbon dots: comprehensive cytotoxicity, phytotoxicity, and bioimaging in animal cells and plants.
    Assariha S; Alvandi N; Rouhani S; Esfandiari N
    Luminescence; 2023 May; 38(5):554-567. PubMed ID: 36929145
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantitative Metabonomic Phenotypes in Different Structures of Mung Bean (
    Wang Y; Wu X; An Y; Xie H; Hao F; Tang H
    J Proteome Res; 2020 Aug; 19(8):3352-3363. PubMed ID: 32498518
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Uptake studies of environmentally hazardous (51)Cr in Mung beans.
    Banerjee A; Nayak D; Chakrabortty D; Lahiri S
    Environ Pollut; 2008 Jan; 151(2):423-7. PubMed ID: 17673342
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of exogenous selenium application on nutritional quality and metabolomic characteristics of mung bean (
    Wang K; Yuan Y; Luo X; Shen Z; Huang Y; Zhou H; Gao X
    Front Plant Sci; 2022; 13():961447. PubMed ID: 36061759
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinetic changes of nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time.
    Huang X; Cai W; Xu B
    Food Chem; 2014 Jan; 143():268-76. PubMed ID: 24054239
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Presence and formation of fluorescence carbon dots in a grilled hamburger.
    Li Y; Bi J; Liu S; Wang H; Yu C; Li D; Zhu BW; Tan M
    Food Funct; 2017 Jul; 8(7):2558-2565. PubMed ID: 28660980
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Integrated Transcriptomic and Metabolic Framework for Carbon Metabolism and Plant Hormones Regulation in Vigna radiata during Post-Germination Seedling Growth.
    Wang H; Guo X; Li Q; Lu Y; Huang W; Zhang F; Chen L; Liu RH; Yan S
    Sci Rep; 2020 Feb; 10(1):3745. PubMed ID: 32111951
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Detection of tannery effluents induced DNA damage in mung bean by use of random amplified polymorphic DNA markers.
    Raj A; Kumar S; Haq I; Kumar M
    ISRN Biotechnol; 2014; 2014():727623. PubMed ID: 25937990
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of pinoresinol diglucoside production by Phomopsis sp. XP-8 in different media and the characterisation and product profiles of the cultivation in mung bean.
    Zhang Y; Shi J; Gao Z; Che J; Shao D; Liu Y
    J Sci Food Agric; 2016 Sep; 96(12):4015-25. PubMed ID: 26694522
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Onion Peel Waste Mediated-Green Synthesis of Zinc Oxide Nanoparticles and Their Phytotoxicity on Mung Bean and Wheat Plant Growth.
    Modi S; Yadav VK; Choudhary N; Alswieleh AM; Sharma AK; Bhardwaj AK; Khan SH; Yadav KK; Cheon JK; Jeon BH
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407725
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Potential of Rice Stubble as a Reservoir of Bradyrhizobial Inoculum in Rice-Legume Crop Rotation.
    Piromyou P; Greetatorn T; Teamtisong K; Tittabutr P; Boonkerd N; Teaumroong N
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28916558
    [No Abstract]   [Full Text] [Related]  

  • 52. Purification and characterization of lipoxygenase from mung bean (Vigna radiata L.) germinating seedlings.
    Aanangi R; Kotapati KV; Palaka BK; Kedam T; Kanika ND; Ampasala DR
    3 Biotech; 2016 Jun; 6(1):113. PubMed ID: 28330183
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Distribution of different surface modified carbon dots in pumpkin seedlings.
    Qian K; Guo H; Chen G; Ma C; Xing B
    Sci Rep; 2018 May; 8(1):7991. PubMed ID: 29789656
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metabolomic analysis of energy regulated germination and sprouting of organic mung bean (Vigna radiata) using NMR spectroscopy.
    Chen L; Wu J; Li Z; Liu Q; Zhao X; Yang H
    Food Chem; 2019 Jul; 286():87-97. PubMed ID: 30827671
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolomic analysis of the polyphenols in germinating mung beans (Vigna radiata) seeds and sprouts.
    Tang D; Dong Y; Guo N; Li L; Ren H
    J Sci Food Agric; 2014 Jun; 94(8):1639-47. PubMed ID: 24203396
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhancing the Mobilization of Native Phosphorus in the Mung Bean Rhizosphere Using ZnO Nanoparticles Synthesized by Soil Fungi.
    Raliya R; Tarafdar JC; Biswas P
    J Agric Food Chem; 2016 Apr; 64(16):3111-8. PubMed ID: 27054413
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Induced drought tolerance through wild and mutant bacterial strain Pseudomonas simiae in mung bean (Vigna radiata L.).
    Kumari S; Vaishnav A; Jain S; Varma A; Choudhary DK
    World J Microbiol Biotechnol; 2016 Jan; 32(1):4. PubMed ID: 26712619
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mung Bean (
    Hou D; Yousaf L; Xue Y; Hu J; Wu J; Hu X; Feng N; Shen Q
    Nutrients; 2019 May; 11(6):. PubMed ID: 31159173
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Germinating seeds of the mung bean, Vigna radiata (Fabaceae), as a model for the preliminary evaluation of cytotoxic effects of drugs.
    Kumar VL; Singhal A
    Biocell; 2009 Apr; 33(1):19-24. PubMed ID: 19499882
    [TBL] [Abstract][Full Text] [Related]  

  • 60. iTRAQ analysis of low-phytate mung bean sprouts treated with sodium citrate, sodium acetate and sodium tartrate.
    Jin X; Yang R; Guo L; Wang X; Yan X; Gu Z
    Food Chem; 2017 Mar; 218():285-293. PubMed ID: 27719911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.