These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 27425404)

  • 21. Signature Ions Triggered Electron-Transfer/Higher-Energy Collisional Dissociation (EThcD) for Specific and Confident Glycation Site Mapping in Therapeutic Proteins.
    Wang L; Nwosu C; Gao Y; Zhu MM
    J Am Soc Mass Spectrom; 2020 Mar; 31(3):473-478. PubMed ID: 32126780
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of CML-modified proteins in hemofiltrate of diabetic patients by proteome analysis.
    Schmitt S; Linder M; Ständker L; Hammes HP; Preissner KT
    Exp Clin Endocrinol Diabetes; 2008 Jan; 116(1):26-34. PubMed ID: 17926233
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strategies for proteomic analysis of non-enzymatically glycated proteins.
    Priego Capote F; Sanchez JC
    Mass Spectrom Rev; 2009; 28(1):135-46. PubMed ID: 18949816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mass spectrometry of advanced glycation end products.
    Lapolla A; Basso E; Traldi P
    Adv Clin Chem; 2005; 40():165-217. PubMed ID: 16355923
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advanced glycation endproducts in food and their effects on health.
    Poulsen MW; Hedegaard RV; Andersen JM; de Courten B; Bügel S; Nielsen J; Skibsted LH; Dragsted LO
    Food Chem Toxicol; 2013 Oct; 60():10-37. PubMed ID: 23867544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterizing protein glycosylation sites through higher-energy C-trap dissociation.
    Segu ZM; Mechref Y
    Rapid Commun Mass Spectrom; 2010 May; 24(9):1217-25. PubMed ID: 20391591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Site-specific synthesis of Amadori-modified peptides on solid phase.
    Frolov A; Singer D; Hoffmann R
    J Pept Sci; 2006 Jun; 12(6):389-95. PubMed ID: 16342332
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of AGE-precursors and AGE formation in glycation-induced BSA peptides.
    Ahmad W; Li L; Deng Y
    BMB Rep; 2008 Jul; 41(7):516-22. PubMed ID: 18682035
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Site-specific analysis of advanced glycation end products in plasma proteins of type 2 diabetes mellitus patients.
    Greifenhagen U; Frolov A; Blüher M; Hoffmann R
    Anal Bioanal Chem; 2016 Aug; 408(20):5557-66. PubMed ID: 27236317
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intact glycation end products containing carboxymethyl-lysine and glyoxal lysine dimer obtained from synthetic collagen model peptide.
    Yamada H; Sasaki T; Niwa S; Oishi T; Murata M; Kawakami T; Aimoto S
    Bioorg Med Chem Lett; 2004 Nov; 14(22):5677-80. PubMed ID: 15482946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of the LTQ-Orbitrap Velos and the Q-Exactive for proteomic analysis of 1-1000 ng RAW 264.7 cell lysate digests.
    Sun L; Zhu G; Dovichi NJ
    Rapid Commun Mass Spectrom; 2013 Jan; 27(1):157-62. PubMed ID: 23239329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of mass spectrometry in studies of glycation processes and diabetes management.
    D'Aronco S; Crotti S; Agostini M; Traldi P; Chilelli NC; Lapolla A
    Mass Spectrom Rev; 2019 Jan; 38(1):112-146. PubMed ID: 30423209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of modification sites in glycated crystallin in vitro and in vivo.
    Kielmas M; Kijewska M; Kluczyk A; Oficjalska J; Gołębiewska B; Stefanowicz P; Szewczuk Z
    Anal Bioanal Chem; 2015 Mar; 407(9):2557-67. PubMed ID: 25636230
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Osmotic stress is accompanied by protein glycation in Arabidopsis thaliana.
    Paudel G; Bilova T; Schmidt R; Greifenhagen U; Berger R; Tarakhovskaya E; Stöckhardt S; Balcke GU; Humbeck K; Brandt W; Sinz A; Vogt T; Birkemeyer C; Wessjohann L; Frolov A
    J Exp Bot; 2016 Dec; 67(22):6283-6295. PubMed ID: 27856706
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification and relative quantification of specific glycation sites in human serum albumin.
    Frolov A; Hoffmann R
    Anal Bioanal Chem; 2010 Jul; 397(6):2349-56. PubMed ID: 20496030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Profiling of Methylglyoxal Blood Metabolism and Advanced Glycation End-Product Proteome Using a Chemical Probe.
    Sibbersen C; Schou Oxvig AM; Bisgaard Olesen S; Nielsen CB; Galligan JJ; Jørgensen KA; Palmfeldt J; Johannsen M
    ACS Chem Biol; 2018 Dec; 13(12):3294-3305. PubMed ID: 30508371
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of mass spectrometry in the study of non-enzymatic protein glycation in diabetes: an update.
    Lapolla A; Fedele D; Seraglia R; Traldi P
    Mass Spectrom Rev; 2006; 25(5):775-97. PubMed ID: 16625652
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lysine proximity significantly affects glycation of lysine-containing collagen model peptides.
    Kitamura A; Matsui K; Konoki K; Matsumori N; Murata M; Kawakami T; Aimoto S
    Bioorg Med Chem; 2011 Apr; 19(7):2125-9. PubMed ID: 21429751
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteomic Investigation of Glyceraldehyde-Derived Intracellular AGEs and Their Potential Influence on Pancreatic Ductal Cells.
    Senavirathna L; Ma C; Chen R; Pan S
    Cells; 2021 Apr; 10(5):. PubMed ID: 33923186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Review of diabetes: identification of markers for early detection, glycemic control, and monitoring clinical complications.
    Wu JT
    J Clin Lab Anal; 1993; 7(5):293-300. PubMed ID: 8410489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.