These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

596 related articles for article (PubMed ID: 27425574)

  • 1. Trichinella spiralis: Adaptation and parasitism.
    Zarlenga D; Wang Z; Mitreva M
    Vet Parasitol; 2016 Nov; 231():8-21. PubMed ID: 27425574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Genomic Analysis of
    Qu Z; Li W; Zhang N; Li L; Yan H; Li T; Cui J; Yang Y; Jia W; Fu B
    Biomed Res Int; 2019; 2019():2948973. PubMed ID: 31240209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The draft genome of the parasitic nematode Trichinella spiralis.
    Mitreva M; Jasmer DP; Zarlenga DS; Wang Z; Abubucker S; Martin J; Taylor CM; Yin Y; Fulton L; Minx P; Yang SP; Warren WC; Fulton RS; Bhonagiri V; Zhang X; Hallsworth-Pepin K; Clifton SW; McCarter JP; Appleton J; Mardis ER; Wilson RK
    Nat Genet; 2011 Mar; 43(3):228-35. PubMed ID: 21336279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A tale of three kingdoms: members of the Phylum Nematoda independently acquired the detoxifying enzyme cyanase through horizontal gene transfer from plants and bacteria.
    Zarlenga DS; Mitreva M; Thompson P; Tyagi R; Tuo W; Hoberg EP
    Parasitology; 2019 Apr; 146(4):445-452. PubMed ID: 30301483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How to become a parasite - lessons from the genomes of nematodes.
    Dieterich C; Sommer RJ
    Trends Genet; 2009 May; 25(5):203-9. PubMed ID: 19361881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in the sequencing of the genome of the adenophorean nematode Trichinella spiralis.
    Mitreva M; Jasmer DP
    Parasitology; 2008 Jul; 135(8):869-80. PubMed ID: 18598573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pan-phylum Comparison of Nematode Metabolic Potential.
    Tyagi R; Rosa BA; Lewis WG; Mitreva M
    PLoS Negl Trop Dis; 2015 May; 9(5):e0003788. PubMed ID: 26000881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trichinella spiralis: genomic application to control a zoonotic nematode.
    Mitreva M; Jasmer DP
    Infect Disord Drug Targets; 2010 Oct; 10(5):376-84. PubMed ID: 20701572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nematoda: genes, genomes and the evolution of parasitism.
    Blaxter ML
    Adv Parasitol; 2003; 54():101-95. PubMed ID: 14711085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cys-loop ligand-gated ion channel gene family of Brugia malayi and Trichinella spiralis: a comparison with Caenorhabditis elegans.
    Williamson SM; Walsh TK; Wolstenholme AJ
    Invert Neurosci; 2007 Dec; 7(4):219-26. PubMed ID: 17952476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signatures of adaptation to plant parasitism in nematode genomes.
    Bird DM; Jones JT; Opperman CH; Kikuchi T; Danchin EG
    Parasitology; 2015 Feb; 142 Suppl 1(Suppl 1):S71-84. PubMed ID: 25656361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Genomics of Gene Loss and Gain in Caenorhabditis and Other Nematodes.
    Rödelsperger C
    Methods Mol Biol; 2018; 1704():419-432. PubMed ID: 29277876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene discovery in the adenophorean nematode Trichinella spiralis: an analysis of transcription from three life cycle stages.
    Mitreva M; Jasmer DP; Appleton J; Martin J; Dante M; Wylie T; Clifton SW; Waterston RH; McCarter JP
    Mol Biochem Parasitol; 2004 Oct; 137(2):277-91. PubMed ID: 15383298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Can We Understand the Genomic Basis of Nematode Parasitism?
    Viney M
    Trends Parasitol; 2017 Jun; 33(6):444-452. PubMed ID: 28274802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome Evolution of Plant-Parasitic Nematodes.
    Kikuchi T; Eves-van den Akker S; Jones JT
    Annu Rev Phytopathol; 2017 Aug; 55():333-354. PubMed ID: 28590877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genus-level evolutionary relationships of FAR proteins reflect the diversity of lifestyles of free-living and parasitic nematodes.
    Yuan D; Li S; Shang Z; Wan M; Lin Y; Zhang Y; Feng Y; Xu L; Xiao L
    BMC Biol; 2021 Aug; 19(1):178. PubMed ID: 34461887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNAi effector diversity in nematodes.
    Dalzell JJ; McVeigh P; Warnock ND; Mitreva M; Bird DM; Abad P; Fleming CC; Day TA; Mousley A; Marks NJ; Maule AG
    PLoS Negl Trop Dis; 2011 Jun; 5(6):e1176. PubMed ID: 21666793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Ditylenchus destructor genome provides new insights into the evolution of plant parasitic nematodes.
    Zheng J; Peng D; Chen L; Liu H; Chen F; Xu M; Ju S; Ruan L; Sun M
    Proc Biol Sci; 2016 Jul; 283(1835):. PubMed ID: 27466450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Horizontal gene transfer of microbial cellulases into nematode genomes is associated with functional assimilation and gene turnover.
    Mayer WE; Schuster LN; Bartelmes G; Dieterich C; Sommer RJ
    BMC Evol Biol; 2011 Jan; 11():13. PubMed ID: 21232122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic analysis of insertions and deletions specific to nematode proteins and their proposed functional and evolutionary relevance.
    Wang Z; Martin J; Abubucker S; Yin Y; Gasser RB; Mitreva M
    BMC Evol Biol; 2009 Jan; 9():23. PubMed ID: 19175938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.