These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
357 related articles for article (PubMed ID: 27425620)
21. Amyloid cored plaques in Tg2576 transgenic mice are characterized by giant plaques, slightly activated microglia, and the lack of paired helical filament-typed, dystrophic neurites. Sasaki A; Shoji M; Harigaya Y; Kawarabayashi T; Ikeda M; Naito M; Matsubara E; Abe K; Nakazato Y Virchows Arch; 2002 Oct; 441(4):358-67. PubMed ID: 12404061 [TBL] [Abstract][Full Text] [Related]
22. Quantitative analysis of amyloid plaques in a mouse model of Alzheimer's disease by phase-contrast X-ray computed tomography. Noda-Saita K; Yoneyama A; Shitaka Y; Hirai Y; Terai K; Wu J; Takeda T; Hyodo K; Osakabe N; Yamaguchi T; Okada M Neuroscience; 2006; 138(4):1205-13. PubMed ID: 16460878 [TBL] [Abstract][Full Text] [Related]
23. Impact of CRFR1 Ablation on Amyloid-β Production and Accumulation in a Mouse Model of Alzheimer's Disease. Campbell SN; Zhang C; Roe AD; Lee N; Lao KU; Monte L; Donohue MC; Rissman RA J Alzheimers Dis; 2015; 45(4):1175-84. PubMed ID: 25697705 [TBL] [Abstract][Full Text] [Related]
25. Cerebral amyloid-beta protein accumulation with aging in cotton-top tamarins: a model of early Alzheimer's disease? Lemere CA; Oh J; Stanish HA; Peng Y; Pepivani I; Fagan AM; Yamaguchi H; Westmoreland SV; Mansfield KG Rejuvenation Res; 2008 Apr; 11(2):321-32. PubMed ID: 18341428 [TBL] [Abstract][Full Text] [Related]
26. Neuroprotective role of γ-enolase in microglia in a mouse model of Alzheimer's disease is regulated by cathepsin X. Hafner A; Glavan G; Obermajer N; Živin M; Schliebs R; Kos J Aging Cell; 2013 Aug; 12(4):604-14. PubMed ID: 23621429 [TBL] [Abstract][Full Text] [Related]
27. Correlation of Aβ deposition in the nasal cavity with the formation of senile plaques in the brain of a transgenic mouse model of Alzheimer's disease. Kameshima N; Nanjou T; Fukuhara T; Yanagisawa D; Tooyama I Neurosci Lett; 2012 Apr; 513(2):166-9. PubMed ID: 22343315 [TBL] [Abstract][Full Text] [Related]
28. Microglia-Synapse Pathways: Promising Therapeutic Strategy for Alzheimer's Disease. Xie J; Wang H; Lin T; Bi B Biomed Res Int; 2017; 2017():2986460. PubMed ID: 28473983 [TBL] [Abstract][Full Text] [Related]
30. CD40 ligation mediates plaque-associated tau phosphorylation in beta-amyloid overproducing mice. Laporte V; Ait-Ghezala G; Volmar CH; Ganey C; Ganey N; Wood M; Mullan M Brain Res; 2008 Sep; 1231():132-42. PubMed ID: 18606155 [TBL] [Abstract][Full Text] [Related]
31. Intravenous infusion of monocytes isolated from 2-week-old mice enhances clearance of Beta-amyloid plaques in an Alzheimer mouse model. Hohsfield LA; Humpel C PLoS One; 2015; 10(4):e0121930. PubMed ID: 25830951 [TBL] [Abstract][Full Text] [Related]
32. Long-term central pathology and cognitive impairment are exacerbated in a mixed model of Alzheimer's disease and type 2 diabetes. Infante-Garcia C; Ramos-Rodriguez JJ; Galindo-Gonzalez L; Garcia-Alloza M Psychoneuroendocrinology; 2016 Mar; 65():15-25. PubMed ID: 26708068 [TBL] [Abstract][Full Text] [Related]
33. Biochemical stages of amyloid-β peptide aggregation and accumulation in the human brain and their association with symptomatic and pathologically preclinical Alzheimer's disease. Rijal Upadhaya A; Kosterin I; Kumar S; von Arnim CA; Yamaguchi H; Fändrich M; Walter J; Thal DR Brain; 2014 Mar; 137(Pt 3):887-903. PubMed ID: 24519982 [TBL] [Abstract][Full Text] [Related]
34. Human tau increases amyloid β plaque size but not amyloid β-mediated synapse loss in a novel mouse model of Alzheimer's disease. Jackson RJ; Rudinskiy N; Herrmann AG; Croft S; Kim JM; Petrova V; Ramos-Rodriguez JJ; Pitstick R; Wegmann S; Garcia-Alloza M; Carlson GA; Hyman BT; Spires-Jones TL Eur J Neurosci; 2016 Dec; 44(12):3056-3066. PubMed ID: 27748574 [TBL] [Abstract][Full Text] [Related]
35. Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue. Liu J; Costantino I; Venugopalan N; Fischetti RF; Hyman BT; Frosch MP; Gomez-Isla T; Makowski L Sci Rep; 2016 Sep; 6():33079. PubMed ID: 27629394 [TBL] [Abstract][Full Text] [Related]
36. Distinct inflammatory phenotypes of microglia and monocyte-derived macrophages in Alzheimer's disease models: effects of aging and amyloid pathology. Martin E; Boucher C; Fontaine B; Delarasse C Aging Cell; 2017 Feb; 16(1):27-38. PubMed ID: 27723233 [TBL] [Abstract][Full Text] [Related]
37. Heterozygous knockout of cytosolic phospholipase A Qu B; Gong Y; Gill JM; Kenney K; Diaz-Arrastia R Brain Res; 2017 Sep; 1670():248-252. PubMed ID: 28648388 [TBL] [Abstract][Full Text] [Related]
38. Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer's disease. Mueller-Steiner S; Zhou Y; Arai H; Roberson ED; Sun B; Chen J; Wang X; Yu G; Esposito L; Mucke L; Gan L Neuron; 2006 Sep; 51(6):703-14. PubMed ID: 16982417 [TBL] [Abstract][Full Text] [Related]
39. Design and evaluation of a 6-mer amyloid-beta protein derived phage display library for molecular targeting of amyloid plaques in Alzheimer's disease: Comparison with two cyclic heptapeptides derived from a randomized phage display library. Larbanoix L; Burtea C; Ansciaux E; Laurent S; Mahieu I; Vander Elst L; Muller RN Peptides; 2011 Jun; 32(6):1232-43. PubMed ID: 21575663 [TBL] [Abstract][Full Text] [Related]
40. The effect of focal brain injury on beta-amyloid plaque deposition, inflammation and synapses in the APP/PS1 mouse model of Alzheimer's disease. Collins JM; King AE; Woodhouse A; Kirkcaldie MT; Vickers JC Exp Neurol; 2015 May; 267():219-29. PubMed ID: 25747037 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]