BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27426255)

  • 1. Origin of Asymmetry of Paired Nanogap Voltammograms Based on Scanning Electrochemical Microscopy: Contamination Not Adsorption.
    Chen R; Balla RJ; Li Z; Liu H; Amemiya S
    Anal Chem; 2016 Aug; 88(16):8323-31. PubMed ID: 27426255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic contamination of highly oriented pyrolytic graphite as studied by scanning electrochemical microscopy.
    Nioradze N; Chen R; Kurapati N; Khvataeva-Domanov A; Mabic S; Amemiya S
    Anal Chem; 2015 May; 87(9):4836-43. PubMed ID: 25843146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Adsorption on Scanning Electrochemical Microscopy Voltammetry and Implications for Nanogap Measurements.
    Tan SY; Zhang J; Bond AM; Macpherson JV; Unwin PR
    Anal Chem; 2016 Mar; 88(6):3272-80. PubMed ID: 26877069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scanning Electrochemical Microscopy of Carbon Nanomaterials and Graphite.
    Amemiya S; Chen R; Nioradze N; Kim J
    Acc Chem Res; 2016 Sep; 49(9):2007-14. PubMed ID: 27602588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltammetric Measurement of Adsorption Isotherm for Ferrocene Derivatives on Highly Oriented Pyrolytic Graphite.
    Kurapati N; Pathirathna P; Chen R; Amemiya S
    Anal Chem; 2018 Nov; 90(22):13632-13639. PubMed ID: 30350623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanogap-Resolved Adsorption-Coupled Electron Transfer by Scanning Electrochemical Microscopy: Implications for Electrocatalysis.
    Kurapati N; Janda DC; Balla RJ; Huang SH; Leonard KC; Amemiya S
    Anal Chem; 2022 Dec; 94(51):17956-17963. PubMed ID: 36512745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemistry of Fe
    Zhang G; Tan SY; Patel AN; Unwin PR
    Phys Chem Chem Phys; 2016 Nov; 18(47):32387-32395. PubMed ID: 27858021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanogap-Based Electrochemical Measurements at Double-Carbon-Fiber Ultramicroelectrodes.
    Pathirathna P; Balla RJ; Amemiya S
    Anal Chem; 2018 Oct; 90(20):11746-11750. PubMed ID: 30251536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemistry at highly oriented pyrolytic graphite (HOPG): lower limit for the kinetics of outer-sphere redox processes and general implications for electron transfer models.
    Zhang G; Cuharuc AS; Güell AG; Unwin PR
    Phys Chem Chem Phys; 2015 May; 17(17):11827-38. PubMed ID: 25869656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemistry of ferrocene derivatives on highly oriented pyrolytic graphite (HOPG): quantification and impacts of surface adsorption.
    Cuharuc AS; Zhang G; Unwin PR
    Phys Chem Chem Phys; 2016 Feb; 18(6):4966-77. PubMed ID: 26812483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning electrochemical microscopic study of hydrogen oxidation and evolution at electrochemically deposited pt nanoparticulate electrode incorporated in polyaniline.
    Ahmed S; Ji S; Petrik L; Linkov VM
    Anal Sci; 2004 Sep; 20(9):1283-7. PubMed ID: 15478337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasi-steady-state voltammetry of rapid electron transfer reactions at the macroscopic substrate of the scanning electrochemical microscope.
    Nioradze N; Kim J; Amemiya S
    Anal Chem; 2011 Feb; 83(3):828-35. PubMed ID: 21175129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison and reappraisal of carbon electrodes for the voltammetric detection of dopamine.
    Patel AN; Tan SY; Miller TS; Macpherson JV; Unwin PR
    Anal Chem; 2013 Dec; 85(24):11755-64. PubMed ID: 24308368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward More Reliable Measurements of Electron-Transfer Kinetics at Nanoelectrodes: Next Approximation.
    Yu Y; Sun T; Mirkin MV
    Anal Chem; 2016 Dec; 88(23):11758-11766. PubMed ID: 27934100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scanning electrochemical microscopy. 57. SECM tip voltammetry at different substrate potentials under quasi-steady-state and steady-state conditions.
    Zoski CG; Luman CR; Fernández JL; Bard AJ
    Anal Chem; 2007 Jul; 79(13):4957-66. PubMed ID: 17530738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Inhibitory Electron Transfer of the Co(III)/Co(II)-Complex Redox Couple at Pristine Carbon Electrode.
    Chen R; Najarian AM; Kurapati N; Balla RJ; Oleinick A; Svir I; Amatore C; McCreery RL; Amemiya S
    Anal Chem; 2018 Sep; 90(18):11115-11123. PubMed ID: 30118206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrast stability and 'stripe' formation in scanning tunnelling microscopy imaging of highly oriented pyrolytic graphite: the role of STM-tip orientations.
    Mándi G; Teobaldi G; Palotás K
    J Phys Condens Matter; 2014 Dec; 26(48):485007. PubMed ID: 25352186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized theory for nanoscale voltammetric measurements of heterogeneous electron-transfer kinetics at macroscopic substrates by scanning electrochemical microscopy.
    Amemiya S; Nioradze N; Santhosh P; Deible MJ
    Anal Chem; 2011 Aug; 83(15):5928-35. PubMed ID: 21682337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical atomic force microscopy using a tip-attached redox mediator for topographic and functional imaging of nanosystems.
    Anne A; Cambril E; Chovin A; Demaille C; Goyer C
    ACS Nano; 2009 Oct; 3(10):2927-40. PubMed ID: 19769340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical oxidation of dihydronicotinamide adenine dinucleotide (NADH): comparison of highly oriented pyrolytic graphite (HOPG) and polycrystalline boron-doped diamond (pBDD) electrodes.
    Maddar FM; Lazenby RA; Patel AN; Unwin PR
    Phys Chem Chem Phys; 2016 Sep; 18(38):26404-26411. PubMed ID: 27711627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.