BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 27426518)

  • 1. Environmental 24-hr Cycles Are Essential for Health.
    Lucassen EA; Coomans CP; van Putten M; de Kreij SR; van Genugten JH; Sutorius RP; de Rooij KE; van der Velde M; Verhoeve SL; Smit JW; Löwik CW; Smits HH; Guigas B; Aartsma-Rus AM; Meijer JH
    Curr Biol; 2016 Jul; 26(14):1843-53. PubMed ID: 27426518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feeding and adrenal entrainment stimuli are both necessary for normal circadian oscillation of peripheral clocks in mice housed under different photoperiods.
    Ikeda Y; Sasaki H; Ohtsu T; Shiraishi T; Tahara Y; Shibata S
    Chronobiol Int; 2015 Mar; 32(2):195-210. PubMed ID: 25286135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restoration of circadian rhythmicity in circadian clock-deficient mice in constant light.
    Abraham D; Dallmann R; Steinlechner S; Albrecht U; Eichele G; Oster H
    J Biol Rhythms; 2006 Jun; 21(3):169-76. PubMed ID: 16731656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The suprachiasmatic nucleus: age-related decline in biological rhythms.
    Nakamura TJ; Takasu NN; Nakamura W
    J Physiol Sci; 2016 Sep; 66(5):367-74. PubMed ID: 26915078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic exposure to dim artificial light disrupts the daily rhythm in mitochondrial respiration in mouse suprachiasmatic nucleus.
    Rajput P; Kumar D; Krishnamurthy S
    Chronobiol Int; 2023 Jul; 40(7):938-951. PubMed ID: 37483020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced phase resetting in the synchronized suprachiasmatic nucleus network.
    Ramkisoensing A; Gu C; van Engeldorp Gastelaars HM; Michel S; Deboer T; Rohling JH; Meijer JH
    J Biol Rhythms; 2014 Feb; 29(1):4-15. PubMed ID: 24492878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 5-HT1B receptor knockout mice exhibit an enhanced response to constant light.
    Sollars PJ; Ogilvie MD; Rea MA; Pickard GE
    J Biol Rhythms; 2002 Oct; 17(5):428-37. PubMed ID: 12375619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The methamphetamine-sensitive circadian oscillator (MASCO) in mice.
    Tataroglu O; Davidson AJ; Benvenuto LJ; Menaker M
    J Biol Rhythms; 2006 Jun; 21(3):185-94. PubMed ID: 16731658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detrimental effects of constant light exposure and high-fat diet on circadian energy metabolism and insulin sensitivity.
    Coomans CP; van den Berg SA; Houben T; van Klinken JB; van den Berg R; Pronk AC; Havekes LM; Romijn JA; van Dijk KW; Biermasz NR; Meijer JH
    FASEB J; 2013 Apr; 27(4):1721-32. PubMed ID: 23303208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation with behavioral activity and rest implies circadian regulation by SCN neuronal activity levels.
    Houben T; Deboer T; van Oosterhout F; Meijer JH
    J Biol Rhythms; 2009 Dec; 24(6):477-87. PubMed ID: 19926807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of prokineticin 2 expression by light and the circadian clock.
    Cheng MY; Bittman EL; Hattar S; Zhou QY
    BMC Neurosci; 2005 Mar; 6():17. PubMed ID: 15762991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reorganization of the suprachiasmatic nucleus coding for day length.
    Naito E; Watanabe T; Tei H; Yoshimura T; Ebihara S
    J Biol Rhythms; 2008 Apr; 23(2):140-9. PubMed ID: 18375863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced light-entrained activity onsets and restored free-running suprachiasmatic nucleus circadian rhythms in per2/dec mutant mice.
    Bode B; Taneja R; Rossner MJ; Oster H
    Chronobiol Int; 2011 Nov; 28(9):737-50. PubMed ID: 22080784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal encoding by the circadian pacemaker of the SCN.
    VanderLeest HT; Houben T; Michel S; Deboer T; Albus H; Vansteensel MJ; Block GD; Meijer JH
    Curr Biol; 2007 Mar; 17(5):468-73. PubMed ID: 17320387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The proportion of light-responsive neurons determines the limit cycle properties of the suprachiasmatic nucleus.
    Gu C; Ramkisoensing A; Liu Z; Meijer JH; Rohling JH
    J Biol Rhythms; 2014 Feb; 29(1):16-27. PubMed ID: 24492879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The photoperiod, circadian regulation and chronodisruption: the requisite interplay between the suprachiasmatic nuclei and the pineal and gut melatonin.
    Reiter RJ; Rosales-Corral S; Coto-Montes A; Boga JA; Tan DX; Davis JM; Konturek PC; Konturek SJ; Brzozowski T
    J Physiol Pharmacol; 2011 Jun; 62(3):269-74. PubMed ID: 21893686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic Disruption of Circadian Rhythms in the Suprachiasmatic Nucleus Causes Helplessness, Behavioral Despair, and Anxiety-like Behavior in Mice.
    Landgraf D; Long JE; Proulx CD; Barandas R; Malinow R; Welsh DK
    Biol Psychiatry; 2016 Dec; 80(11):827-835. PubMed ID: 27113500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei.
    Hastings MH; Herzog ED
    J Biol Rhythms; 2004 Oct; 19(5):400-13. PubMed ID: 15534320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exposure of pregnant rats to restricted feeding schedule synchronizes the SCN clocks of their fetuses under constant light but not under a light-dark regime.
    Nováková M; Sládek M; Sumová A
    J Biol Rhythms; 2010 Oct; 25(5):350-60. PubMed ID: 20876815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of photoperiod duration and light-dark transitions on entrainment of Per1 and Per2 gene and protein expression in subdivisions of the mouse suprachiasmatic nucleus.
    Sosniyenko S; Hut RA; Daan S; Sumová A
    Eur J Neurosci; 2009 Nov; 30(9):1802-14. PubMed ID: 19840112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.