These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 27426738)
41. Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes. Hu X; Brunschwig BS; Peters JC J Am Chem Soc; 2007 Jul; 129(29):8988-98. PubMed ID: 17602556 [TBL] [Abstract][Full Text] [Related]
42. Efficient Electrochemical and Photoelectrochemical H2 Production from Water by a Cobalt Dithiolene One-Dimensional Metal-Organic Surface. Downes CA; Marinescu SC J Am Chem Soc; 2015 Nov; 137(43):13740-3. PubMed ID: 26444036 [TBL] [Abstract][Full Text] [Related]
43. H Tok GC; Reiter S; Freiberg ATS; Reinschlüssel L; Gasteiger HA; de Vivie-Riedle R; Hess CR Inorg Chem; 2021 Sep; 60(18):13888-13902. PubMed ID: 34297556 [TBL] [Abstract][Full Text] [Related]
44. A New Bioinspired Perchlorate Reduction Catalyst with Significantly Enhanced Stability via Rational Tuning of Rhenium Coordination Chemistry and Heterogeneous Reaction Pathway. Liu J; Han M; Wu D; Chen X; Choe JK; Werth CJ; Strathmann TJ Environ Sci Technol; 2016 Jun; 50(11):5874-81. PubMed ID: 27182602 [TBL] [Abstract][Full Text] [Related]
45. Arginine-containing ligands enhance H₂ oxidation catalyst performance. Dutta A; Roberts JA; Shaw WJ Angew Chem Int Ed Engl; 2014 Jun; 53(25):6487-91. PubMed ID: 24820824 [TBL] [Abstract][Full Text] [Related]
46. Lattice-Hydride Mechanism in Electrocatalytic CO Tang Q; Lee Y; Li DY; Choi W; Liu CW; Lee D; Jiang DE J Am Chem Soc; 2017 Jul; 139(28):9728-9736. PubMed ID: 28640611 [TBL] [Abstract][Full Text] [Related]
47. A cobalt-dithiolene complex for the photocatalytic and electrocatalytic reduction of protons. McNamara WR; Han Z; Alperin PJ; Brennessel WW; Holland PL; Eisenberg R J Am Chem Soc; 2011 Oct; 133(39):15368-71. PubMed ID: 21863808 [TBL] [Abstract][Full Text] [Related]
48. Electrocatalytic Hydrogen Evolution by Cobalt Complexes with a Redox Non-Innocent Polypyridine Ligand. Liu J; Liao RZ; Heinemann FW; Meyer K; Thummel RP; Zhang Y; Tong L Inorg Chem; 2021 Dec; 60(23):17976-17985. PubMed ID: 34808047 [TBL] [Abstract][Full Text] [Related]
49. Experimental and Theoretical Insight into Electrocatalytic Hydrogen Evolution with Nickel Bis(aryldithiolene) Complexes as Catalysts. Zarkadoulas A; Field MJ; Papatriantafyllopoulou C; Fize J; Artero V; Mitsopoulou CA Inorg Chem; 2016 Jan; 55(2):432-44. PubMed ID: 26645557 [TBL] [Abstract][Full Text] [Related]
50. Ligand versus metal protonation of an iron hydrogenase active site mimic. Eilers G; Schwartz L; Stein M; Zampella G; de Gioia L; Ott S; Lomoth R Chemistry; 2007; 13(25):7075-84. PubMed ID: 17566128 [TBL] [Abstract][Full Text] [Related]
51. Highly functionalizable penta-coordinate iron hydrogen production catalysts with low overpotentials. Eady SC; Breault T; Thompson L; Lehnert N Dalton Trans; 2016 Jan; 45(3):1138-51. PubMed ID: 26661506 [TBL] [Abstract][Full Text] [Related]
52. Light-Driven Proton Reduction in Aqueous Medium Catalyzed by a Family of Cobalt Complexes with Tetradentate Polypyridine-Type Ligands. Tong L; Kopecky A; Zong R; Gagnon KJ; Ahlquist MS; Thummel RP Inorg Chem; 2015 Aug; 54(16):7873-84. PubMed ID: 26213196 [TBL] [Abstract][Full Text] [Related]
53. Translation of Ligand-Centered Hydrogen Evolution Reaction Activity and Mechanism of a Rhenium-Thiolate from Solution to Modified Electrodes: A Combined Experimental and Density Functional Theory Study. Zhang W; Haddad AZ; Garabato BD; Kozlowski PM; Buchanan RM; Grapperhaus CA Inorg Chem; 2017 Feb; 56(4):2177-2187. PubMed ID: 28182418 [TBL] [Abstract][Full Text] [Related]
54. DFT and Empirical Considerations on Electrocatalytic Water/Carbon Dioxide Reduction by CoTMPyP in Neutral Aqueous Solutions*. Bochlin Y; Ben-Eliyahu Y; Kadosh Y; Kozuch S; Zilbermann I; Korin E; Bettelheim A Chemphyschem; 2020 Dec; 21(24):2644-2650. PubMed ID: 33142035 [TBL] [Abstract][Full Text] [Related]
55. Electrochemical, spectroscopic and theoretical studies of a simple bifunctional cobalt corrole catalyst for oxygen evolution and hydrogen production. Lei H; Han A; Li F; Zhang M; Han Y; Du P; Lai W; Cao R Phys Chem Chem Phys; 2014 Feb; 16(5):1883-93. PubMed ID: 24327074 [TBL] [Abstract][Full Text] [Related]
56. Structure-Activity and Stability Relationships for Cobalt Polypyridyl-Based Hydrogen-Evolving Catalysts in Water. Schnidrig S; Bachmann C; Müller P; Weder N; Spingler B; Joliat-Wick E; Mosberger M; Windisch J; Alberto R; Probst B ChemSusChem; 2017 Nov; 10(22):4570-4580. PubMed ID: 29052339 [TBL] [Abstract][Full Text] [Related]
57. Computational Study of Fluorinated Diglyoxime-Iron Complexes: Tuning the Electrocatalytic Pathways for Hydrogen Evolution. Harshan AK; Solis BH; Winkler JR; Gray HB; Hammes-Schiffer S Inorg Chem; 2016 Mar; 55(6):2934-40. PubMed ID: 26943883 [TBL] [Abstract][Full Text] [Related]
58. Deciphering Electrocatalytic Hydrogen Production in Water Through a Bioinspired Water-Stable Copper(II) Complex Adorned with (N Diyali S; Saha S; Diyali N; Bhattacharjee A; Mallick A; Agrawalla SK; Purohit CS; Biswas B ChemSusChem; 2024 Oct; ():e202401089. PubMed ID: 39365613 [TBL] [Abstract][Full Text] [Related]
59. Identification of an Electrode-Adsorbed Intermediate in the Catalytic Hydrogen Evolution Mechanism of a Cobalt Dithiolene Complex. Lee KJ; McCarthy BD; Rountree ES; Dempsey JL Inorg Chem; 2017 Feb; 56(4):1988-1998. PubMed ID: 28165236 [TBL] [Abstract][Full Text] [Related]
60. Oxygen Tolerance of a Molecular Engineered Cathode for Hydrogen Evolution Based on a Cobalt Diimine-Dioxime Catalyst. Kaeffer N; Morozan A; Artero V J Phys Chem B; 2015 Oct; 119(43):13707-13. PubMed ID: 25993343 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]