BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 27426920)

  • 1. Yeast membrane proteomics using leucine metabolic labelling: Bioinformatic data processing and exemplary application to the ER-intramembrane protease Ypf1.
    Nilse L; Avci D; Heisterkamp P; Serang O; Lemberg MK; Schilling O
    Biochim Biophys Acta; 2016 Oct; 1864(10):1363-71. PubMed ID: 27426920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The yeast ER-intramembrane protease Ypf1 refines nutrient sensing by regulating transporter abundance.
    Avci D; Fuchs S; Schrul B; Fukumori A; Breker M; Frumkin I; Chen CY; Biniossek ML; Kremmer E; Schilling O; Steiner H; Schuldiner M; Lemberg MK
    Mol Cell; 2014 Dec; 56(5):630-40. PubMed ID: 25454947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of the SILAC (stable isotope labelling with amino acids in cell culture) technique in quantitative comparisons for tissue proteome expression.
    Xu Y; Liang S; Shen G; Xu X; Liu Q; Xu Z; Gong F; Tang M; Wei Y
    Biotechnol Appl Biochem; 2009 Jul; 54(1):11-20. PubMed ID: 19250064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Latest developments in sample treatment for 18O-isotopic labeling for proteomics mass spectrometry-based approaches: a critical review.
    Capelo JL; Carreira RJ; Fernandes L; Lodeiro C; Santos HM; Simal-Gandara J
    Talanta; 2010 Feb; 80(4):1476-86. PubMed ID: 20082805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Labeling of Bifidobacterium longum cells with 13C-substituted leucine for quantitative proteomic analyses.
    Couté Y; Hernandez C; Appel RD; Sanchez JC; Margolles A
    Appl Environ Microbiol; 2007 Sep; 73(17):5653-6. PubMed ID: 17601805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Profiling of Protease Cleavage Sites by Proteome-Derived Peptide Libraries and Quantitative Proteomics.
    Chen CY; Mayer B; Schilling O
    Methods Mol Biol; 2017; 1574():197-204. PubMed ID: 28315252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine.
    Eckhard U; Marino G; Butler GS; Overall CM
    Biochimie; 2016 Mar; 122():110-8. PubMed ID: 26542287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of proteolytic products and natural protein N-termini by Terminal Amine Isotopic Labeling of Substrates (TAILS).
    Doucet A; Kleifeld O; Kizhakkedathu JN; Overall CM
    Methods Mol Biol; 2011; 753():273-87. PubMed ID: 21604129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Proteomics in Yeast : From bSLIM and Proteome Discoverer Outputs to Graphical Assessment of the Significance of Protein Quantification Scores.
    Sénécaut N; Poulain P; Lignières L; Terrier S; Legros V; Chevreux G; Lelandais G; Camadro JM
    Methods Mol Biol; 2022; 2477():275-292. PubMed ID: 35524123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Protease Cleavage Sites and Substrates in Cancer by Carboxy-TAILS (C-TAILS).
    Solis N; Overall CM
    Methods Mol Biol; 2018; 1731():15-28. PubMed ID: 29318539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward improved peptide feature detection in quantitative proteomics using stable isotope labeling.
    Nilse L; Sigloch FC; Biniossek ML; Schilling O
    Proteomics Clin Appl; 2015 Aug; 9(7-8):706-14. PubMed ID: 25931027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-based identification of natural substrates and cleavage sites for extracellular proteases by SILAC proteomics.
    Gioia M; Foster LJ; Overall CM
    Methods Mol Biol; 2009; 539():131-53. PubMed ID: 19377966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guanidination chemistry for qualitative and quantitative proteomics.
    Warwood S; Mohammed S; Cristea IM; Evans C; Whetton AD; Gaskell SJ
    Rapid Commun Mass Spectrom; 2006; 20(21):3245-56. PubMed ID: 17019669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EBprot: Statistical analysis of labeling-based quantitative proteomics data.
    Koh HW; Swa HL; Fermin D; Ler SG; Gunaratne J; Choi H
    Proteomics; 2015 Aug; 15(15):2580-91. PubMed ID: 25913743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane protease degradomics: proteomic identification and quantification of cell surface protease substrates.
    Butler GS; Dean RA; Smith D; Overall CM
    Methods Mol Biol; 2009; 528():159-76. PubMed ID: 19153692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteolytic 18O-labeling strategies for quantitative proteomics.
    Miyagi M; Rao KC
    Mass Spectrom Rev; 2007; 26(1):121-36. PubMed ID: 17086517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Protease Specificity by Combining Proteome-Derived Peptide Libraries and Quantitative Proteomics.
    Biniossek ML; Niemer M; Maksimchuk K; Mayer B; Fuchs J; Huesgen PF; McCafferty DG; Turk B; Fritz G; Mayer J; Haecker G; Mach L; Schilling O
    Mol Cell Proteomics; 2016 Jul; 15(7):2515-24. PubMed ID: 27122596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative proteomics in plant protease substrate identification.
    Demir F; Niedermaier S; Villamor JG; Huesgen PF
    New Phytol; 2018 May; 218(3):936-943. PubMed ID: 28493421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable isotope labelling methods in mass spectrometry-based quantitative proteomics.
    Chahrour O; Cobice D; Malone J
    J Pharm Biomed Anal; 2015 Sep; 113():2-20. PubMed ID: 25956803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic comparison of label-free, metabolic labeling, and isobaric chemical labeling for quantitative proteomics on LTQ Orbitrap Velos.
    Li Z; Adams RM; Chourey K; Hurst GB; Hettich RL; Pan C
    J Proteome Res; 2012 Mar; 11(3):1582-90. PubMed ID: 22188275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.