These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27427287)

  • 1. Heavy metal capture by autochthonous yeasts from a volcanic influenced environment of Patagonia.
    Russo G; Libkind D; Giraudo MR; Delgado OD
    J Basic Microbiol; 2016 Nov; 56(11):1203-1211. PubMed ID: 27427287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast diversity in the acidic Rio Agrio-Lake Caviahue volcanic environment (Patagonia, Argentina).
    Russo G; Libkind D; Sampaio JP; van Broock MR
    FEMS Microbiol Ecol; 2008 Sep; 65(3):415-24. PubMed ID: 18537834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenol degradation and heavy metal tolerance of Antarctic yeasts.
    Fernández PM; Martorell MM; Blaser MG; Ruberto LAM; de Figueroa LIC; Mac Cormack WP
    Extremophiles; 2017 May; 21(3):445-457. PubMed ID: 28271165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Yeasts--biosorbents of heavy metals].
    Podgorskiĭ VS; Kasatkina TP; Lozovaia OG
    Mikrobiol Z; 2004; 66(1):91-103. PubMed ID: 15104060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryptococcus agrionensis sp. nov., a basidiomycetous yeast of the acidic rock drainage ecoclade, isolated from an acidic aquatic environment of volcanic origin.
    Russo G; Libkind D; Ulloa RJ; de García V; Sampaio JP; van Broock MR
    Int J Syst Evol Microbiol; 2010 Apr; 60(Pt 4):996-1000. PubMed ID: 19656939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of yeasts associated with plants growing in heavy-metal- and arsenic-contaminated soils.
    Ramos-Garza J; Bustamante-Brito R; Ángeles de Paz G; Medina-Canales MG; Vásquez-Murrieta MS; Wang ET; Rodríguez-Tovar AV
    Can J Microbiol; 2016 Apr; 62(4):307-19. PubMed ID: 26936448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional groups and activities of bacteria in a highly acidic volcanic mountain stream and lake in Patagonia, Argentina.
    Wendt-Potthoff K; Koschorreck M
    Microb Ecol; 2002 Jan; 43(1):92-106. PubMed ID: 11984632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal tolerance of yeasts isolated from water, soil and plant environments.
    Vadkertiová R; Sláviková E
    J Basic Microbiol; 2006; 46(2):145-52. PubMed ID: 16598828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metal tolerance in the psychrotolerant Cryptococcus sp. isolated from deep-sea sediments of the Central Indian Basin.
    Singh P; Raghukumar C; Parvatkar RR; Mascarenhas-Pereira MB
    Yeast; 2013 Mar; 30(3):93-101. PubMed ID: 23456725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination.
    Mikes J; Siglova M; Cejkova A; Masak J; Jirku V
    Water Sci Technol; 2005; 52(10-11):151-6. PubMed ID: 16459787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal tolerance and biosorption capacity of Bacillus circulans strain EB1.
    Yilmaz EI
    Res Microbiol; 2003; 154(6):409-15. PubMed ID: 12892847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast diversity in the extreme acidic environments of the Iberian Pyrite Belt.
    Gadanho M; Libkind D; Sampaio JP
    Microb Ecol; 2006 Oct; 52(3):552-63. PubMed ID: 17013554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioremediation potential and lead removal capacity of heavy metal-tolerant yeasts isolated from Dayet Oum Ghellaz Lake water (northwest of Algeria).
    Aibeche C; Selami N; Zitouni-Haouar FE; Oeunzar K; Addou A; Kaid-Harche M; Djabeur A
    Int Microbiol; 2022 Jan; 25(1):61-73. PubMed ID: 34227024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compost as a source of microbial isolates for the bioremediation of heavy metals: in vitro selection.
    Vargas-García Mdel C; López MJ; Suárez-Estrella F; Moreno J
    Sci Total Environ; 2012 Aug; 431():62-7. PubMed ID: 22664539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Search of heavy metals biosorbents among yeasts of different taxonomic groups].
    Lozovaia OG; Kasatkina TP; Podgorskiĭ VS
    Mikrobiol Z; 2004; 66(2):92-101. PubMed ID: 15208860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistance to and accumulation of heavy metals by actinobacteria isolated from abandoned mining areas.
    El Baz S; Baz M; Barakate M; Hassani L; El Gharmali A; Imziln B
    ScientificWorldJournal; 2015; 2015():761834. PubMed ID: 25763383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.
    Smith SR
    Environ Int; 2009 Jan; 35(1):142-56. PubMed ID: 18691760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromate removal by yeasts isolated from sediments of a tanning factory and a mine site in Argentina.
    Villegas LB; Fernández PM; Amoroso MJ; de Figueroa LI
    Biometals; 2008 Oct; 21(5):591-600. PubMed ID: 18528763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal changes in metal concentrations in Andean condor feathers: a potential influence of volcanic activity.
    Di Marzio A; Lambertucci SA; García-Fernández AJ; Martínez-López E
    Environ Sci Pollut Res Int; 2020 Jul; 27(20):25600-25611. PubMed ID: 32356051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina).
    Miretzky P; Saralegui A; Cirelli AF
    Chemosphere; 2004 Nov; 57(8):997-1005. PubMed ID: 15488590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.