These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Molecular signaling involving intrinsically disordered proteins in prostate cancer. Russo A; Manna SL; Novellino E; Malfitano AM; Marasco D Asian J Androl; 2016; 18(5):673-81. PubMed ID: 27212129 [TBL] [Abstract][Full Text] [Related]
4. Intrinsically disordered proteins and phenotypic switching: Implications in cancer. Kulkarni V; Kulkarni P Prog Mol Biol Transl Sci; 2019; 166():63-84. PubMed ID: 31521237 [TBL] [Abstract][Full Text] [Related]
5. Phenotypic Plasticity and Cell Fate Decisions in Cancer: Insights from Dynamical Systems Theory. Jia D; Jolly MK; Kulkarni P; Levine H Cancers (Basel); 2017 Jun; 9(7):. PubMed ID: 28640191 [TBL] [Abstract][Full Text] [Related]
6. Opposite regulation of MDM2 and MDMX expression in acquisition of mesenchymal phenotype in benign and cancer cells. Slabáková E; Kharaishvili G; Smějová M; Pernicová Z; Suchánková T; Remšík J; Lerch S; Straková N; Bouchal J; Král M; Culig Z; Kozubík A; Souček K Oncotarget; 2015 Nov; 6(34):36156-71. PubMed ID: 26416355 [TBL] [Abstract][Full Text] [Related]
7. Cancer/Testis Antigens: "Smart" Biomarkers for Diagnosis and Prognosis of Prostate and Other Cancers. Kulkarni P; Uversky VN Int J Mol Sci; 2017 Mar; 18(4):. PubMed ID: 28362316 [TBL] [Abstract][Full Text] [Related]
8. Unfoldomics of prostate cancer: on the abundance and roles of intrinsically disordered proteins in prostate cancer. Landau KS; Na I; Schenck RO; Uversky VN Asian J Androl; 2016; 18(5):662-72. PubMed ID: 27453073 [TBL] [Abstract][Full Text] [Related]
10. Phosphorylation-induced conformational dynamics in an intrinsically disordered protein and potential role in phenotypic heterogeneity. Kulkarni P; Jolly MK; Jia D; Mooney SM; Bhargava A; Kagohara LT; Chen Y; Hao P; He Y; Veltri RW; Grishaev A; Weninger K; Levine H; Orban J Proc Natl Acad Sci U S A; 2017 Mar; 114(13):E2644-E2653. PubMed ID: 28289210 [TBL] [Abstract][Full Text] [Related]
11. NEDD9 crucially regulates TGF-β-triggered epithelial-mesenchymal transition and cell invasion in prostate cancer cells: involvement in cancer progressiveness. Morimoto K; Tanaka T; Nitta Y; Ohnishi K; Kawashima H; Nakatani T Prostate; 2014 Jun; 74(8):901-10. PubMed ID: 24728978 [TBL] [Abstract][Full Text] [Related]
12. Prostate-associated gene 4 (PAGE4), an intrinsically disordered cancer/testis antigen, is a novel therapeutic target for prostate cancer. Kulkarni P; Dunker AK; Weninger K; Orban J Asian J Androl; 2016; 18(5):695-703. PubMed ID: 27270343 [TBL] [Abstract][Full Text] [Related]
13. IDPT: Insights into potential intrinsically disordered proteins through transcriptomic analysis of genes for prostate carcinoma epigenetic data. Mallik S; Sen S; Maulik U Gene; 2016 Jul; 586(1):87-96. PubMed ID: 27060408 [TBL] [Abstract][Full Text] [Related]
14. Intrinsically disordered proteins and prostate cancer: pouring new wine in an old bottle. Kulkarni P Asian J Androl; 2016; 18(5):659-61. PubMed ID: 27427556 [TBL] [Abstract][Full Text] [Related]
15. Regulation of tumor cell plasticity by the androgen receptor in prostate cancer. Bishop JL; Davies A; Ketola K; Zoubeidi A Endocr Relat Cancer; 2015 Jun; 22(3):R165-82. PubMed ID: 25934687 [TBL] [Abstract][Full Text] [Related]
19. Prostate Transglutaminase (TGase-4) Induces Epithelial-to-Mesenchymal Transition in Prostate Cancer Cells. Ablin RJ; Owen S; Jiang WG Anticancer Res; 2017 Feb; 37(2):481-487. PubMed ID: 28179293 [TBL] [Abstract][Full Text] [Related]
20. ERG-SOX4 interaction promotes epithelial-mesenchymal transition in prostate cancer cells. Wang L; Li Y; Yang X; Yuan H; Li X; Qi M; Chang YW; Wang C; Fu W; Yang M; Zhang J; Han B Prostate; 2014 May; 74(6):647-58. PubMed ID: 24435928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]