These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27427645)

  • 61. Dextran coated Fe
    Wang F; Li X; Li W; Bai H; Gao Y; Ma J; Liu W; Xi G
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():46-56. PubMed ID: 29853113
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Photothermal therapeutic response of cancer cells to aptamer-gold nanoparticle-hybridized graphene oxide under NIR illumination.
    Yang L; Tseng YT; Suo G; Chen L; Yu J; Chiu WJ; Huang CC; Lin CH
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5097-106. PubMed ID: 25705789
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy.
    Chen M; Fang X; Tang S; Zheng N
    Chem Commun (Camb); 2012 Sep; 48(71):8934-6. PubMed ID: 22847451
    [TBL] [Abstract][Full Text] [Related]  

  • 64. PEGylated nickel carbide nanocrystals as efficient near-infrared laser induced photothermal therapy for treatment of cancer cells in vivo.
    Zhou Z; Wang J; Liu W; Yu C; Kong B; Sun Y; Yang H; Yang S; Wang W
    Nanoscale; 2014 Nov; 6(21):12591-600. PubMed ID: 25184661
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A novel Met-IR-782 near-infrared probe for fluorescent imaging-guided photothermal therapy in breast cancer.
    Wu Y; Zhang W; Xu D; Ding L; Ma R; Wu JZ; Tang JH
    Lasers Med Sci; 2018 Sep; 33(7):1601-1608. PubMed ID: 29948451
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging.
    Cao Z; Feng L; Zhang G; Wang J; Shen S; Li D; Yang X
    Biomaterials; 2018 Feb; 155():103-111. PubMed ID: 29175079
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Covalent organic framework based nanoagent for enhanced mild-temperature photothermal therapy.
    Sun Q; Tang K; Song L; Li Y; Pan W; Li N; Tang B
    Biomater Sci; 2021 Nov; 9(23):7977-7983. PubMed ID: 34709242
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Nanowires/microfiber hybrid structure multicolor laser.
    Ding Y; Yang Q; Guo X; Wang S; Gu F; Fu J; Wan Q; Cheng J; Tong L
    Opt Express; 2009 Nov; 17(24):21813-8. PubMed ID: 19997426
    [TBL] [Abstract][Full Text] [Related]  

  • 69. BSA-directed synthesis of CuS nanoparticles as a biocompatible photothermal agent for tumor ablation in vivo.
    Zhang C; Fu YY; Zhang X; Yu C; Zhao Y; Sun SK
    Dalton Trans; 2015 Aug; 44(29):13112-8. PubMed ID: 26106950
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Alginate-enabled green synthesis of S/Ag
    Yoong WC; Loke CF; Juan JC; Yusoff K; Mohtarrudin N; Tatsuma T; Xu Y; Lim TH
    Int J Biol Macromol; 2022 Mar; 201():516-527. PubMed ID: 35041888
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation.
    Shen S; Wang S; Zheng R; Zhu X; Jiang X; Fu D; Yang W
    Biomaterials; 2015 Jan; 39():67-74. PubMed ID: 25477173
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Black hollow silicon oxide nanoparticles as highly efficient photothermal agents in the second near-infrared window for in vivo cancer therapy.
    Yu X; Yang K; Chen X; Li W
    Biomaterials; 2017 Oct; 143():120-129. PubMed ID: 28787664
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer.
    Fazal S; Jayasree A; Sasidharan S; Koyakutty M; Nair SV; Menon D
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8080-9. PubMed ID: 24842534
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Superficial synthesis of photoactive copper sulfide quantum dots loaded nano-graphene oxide sheets combined with near infrared (NIR) laser for enhanced photothermal therapy on breast cancer in nursing care management.
    Wang L; Yan J
    J Photochem Photobiol B; 2019 Mar; 192():68-73. PubMed ID: 30685585
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Co-loading of photothermal agents and anticancer drugs into porous silicon nanoparticles with enhanced chemo-photothermal therapeutic efficacy to kill multidrug-resistant cancer cells.
    Xia B; Zhang Q; Shi J; Li J; Chen Z; Wang B
    Colloids Surf B Biointerfaces; 2018 Apr; 164():291-298. PubMed ID: 29413608
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A light-controllable specific drug delivery nanoplatform for targeted bimodal imaging-guided photothermal/chemo synergistic cancer therapy.
    Guo Y; Wang XY; Chen YL; Liu FQ; Tan MX; Ao M; Yu JH; Ran HT; Wang ZX
    Acta Biomater; 2018 Oct; 80():308-326. PubMed ID: 30240955
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Multifunctional Rbx WO3 nanorods for simultaneous combined chemo-photothermal therapy and photoacoustic/CT imaging.
    Tian G; Zhang X; Zheng X; Yin W; Ruan L; Liu X; Zhou L; Yan L; Li S; Gu Z; Zhao Y
    Small; 2014 Oct; 10(20):4160-70. PubMed ID: 24979184
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Polymeric near-infrared absorbing dendritic nanogels for efficient in vivo photothermal cancer therapy.
    Molina M; Wedepohl S; Calderón M
    Nanoscale; 2016 Mar; 8(11):5852-6. PubMed ID: 26931077
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Thermohydrogel Containing Melanin for Photothermal Cancer Therapy.
    Kim M; Kim HS; Kim MA; Ryu H; Jeong HJ; Lee CM
    Macromol Biosci; 2017 May; 17(5):. PubMed ID: 27906510
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Dopant-dependent crystallization and photothermal effect of Sb-doped SnO
    Yu N; Peng C; Wang Z; Liu Z; Zhu B; Yi Z; Zhu M; Liu X; Chen Z
    Nanoscale; 2018 Feb; 10(5):2542-2554. PubMed ID: 29349469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.