These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 27427657)
41. Synthesis of ZnO coated multi-walled carbon nanotubes and their antibacterial activities. Sui M; Zhang L; Sheng L; Huang S; She L Sci Total Environ; 2013 May; 452-453():148-54. PubMed ID: 23500408 [TBL] [Abstract][Full Text] [Related]
42. Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: Characterization and biomedical applications. Vijayakumar S; Vaseeharan B; Malaikozhundan B; Shobiya M Biomed Pharmacother; 2016 Dec; 84():1213-1222. PubMed ID: 27788479 [TBL] [Abstract][Full Text] [Related]
43. Charge influence and growth mechanism of ZnO nanorods. Park SH; Han SW J Nanosci Nanotechnol; 2007 Aug; 7(8):2909-12. PubMed ID: 17685316 [TBL] [Abstract][Full Text] [Related]
44. Synthesis and characterisation of flower shaped zinc oxide nanostructures and its antimicrobial activity. Mohan Kumar K; Mandal BK; Appala Naidu E; Sinha M; Siva Kumar K; Sreedhara Reddy P Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 104():171-4. PubMed ID: 23266691 [TBL] [Abstract][Full Text] [Related]
45. Efficacy of saccharides bio-template on structural, morphological, optical and antibacterial property of ZnO nanoparticles. Dhanalakshmi A; Palanimurugan A; Natarajan B Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():95-103. PubMed ID: 29853152 [TBL] [Abstract][Full Text] [Related]
46. Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors. Abinaya M; Vaseeharan B; Divya M; Sharmili A; Govindarajan M; Alharbi NS; Kadaikunnan S; Khaled JM; Benelli G J Trace Elem Med Biol; 2018 Jan; 45():93-103. PubMed ID: 29173489 [TBL] [Abstract][Full Text] [Related]
47. Synthesizing, characterizing, and toxicity evaluating of Phycocyanin-ZnO nanorod composites: A back to nature approaches. Davaeifar S; Modarresi MH; Mohammadi M; Hashemi E; Shafiei M; Maleki H; Vali H; Zahiri HS; Noghabi KA Colloids Surf B Biointerfaces; 2019 Mar; 175():221-230. PubMed ID: 30537618 [TBL] [Abstract][Full Text] [Related]
48. Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity. Agnihotri S; Bajaj G; Mukherji S; Mukherji S Nanoscale; 2015 Apr; 7(16):7415-29. PubMed ID: 25830178 [TBL] [Abstract][Full Text] [Related]
49. Growth of well-aligned ZnO nanorods using auge catalyst by vapor phase transportation. Ha SY; Jung MN; Park SH; Ko HJ; Ko H; Oh DC; Yao T; Chang JH J Nanosci Nanotechnol; 2006 Nov; 6(11):3624-7. PubMed ID: 17252824 [TBL] [Abstract][Full Text] [Related]
50. Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis Rhizoma. Nagajyothi PC; Sreekanth TV; Tettey CO; Jun YI; Mook SH Bioorg Med Chem Lett; 2014 Sep; 24(17):4298-303. PubMed ID: 25088397 [TBL] [Abstract][Full Text] [Related]
51. Multifunctional palygorskite@ZnO nanorods enhance simultaneously mechanical strength and antibacterial properties of chitosan-based film. Ding J; Hui A; Wang W; Yang F; Kang Y; Wang A Int J Biol Macromol; 2021 Oct; 189():668-677. PubMed ID: 34453980 [TBL] [Abstract][Full Text] [Related]
52. Antibacterial property and biocompatibility of Chitosan/Poly(vinyl alcohol)/ZnO (CS/PVA/ZnO) beads as an efficient adsorbent for Cu(II) removal from aqueous solution. Xu J; Zhang Y; Gutha Y; Zhang W Colloids Surf B Biointerfaces; 2017 Aug; 156():340-348. PubMed ID: 28544966 [TBL] [Abstract][Full Text] [Related]
53. Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothemally synthesized using different surface stabilizing agents. Stanković A; Dimitrijević S; Uskoković D Colloids Surf B Biointerfaces; 2013 Feb; 102():21-8. PubMed ID: 23010107 [TBL] [Abstract][Full Text] [Related]
54. Biopolymer gelatin-coated zinc oxide nanoparticles showed high antibacterial, antibiofilm and anti-angiogenic activity. Divya M; Vaseeharan B; Abinaya M; Vijayakumar S; Govindarajan M; Alharbi NS; Kadaikunnan S; Khaled JM; Benelli G J Photochem Photobiol B; 2018 Jan; 178():211-218. PubMed ID: 29156349 [TBL] [Abstract][Full Text] [Related]
55. Synthesis and characterization of antibacterial carboxymethyl Chitosan/ZnO nanocomposite hydrogels. Wahid F; Yin JJ; Xue DD; Xue H; Lu YS; Zhong C; Chu LQ Int J Biol Macromol; 2016 Jul; 88():273-9. PubMed ID: 27017980 [TBL] [Abstract][Full Text] [Related]
56. Photocatalytic and antibacterial activity of cadmium sulphide/zinc oxide nanocomposite with varied morphology. Jana TK; Maji SK; Pal A; Maiti RP; Dolai TK; Chatterjee K J Colloid Interface Sci; 2016 Oct; 480():9-16. PubMed ID: 27399614 [TBL] [Abstract][Full Text] [Related]
58. Designing of silk and ZnO based antibacterial and noncytotoxic bionanocomposite films and study of their mechanical and UV absorption behavior. Kiro A; Bajpai J; Bajpai AK J Mech Behav Biomed Mater; 2017 Jan; 65():281-294. PubMed ID: 27608426 [TBL] [Abstract][Full Text] [Related]
59. New approach to biosensing of co-enzyme nicotinamide adenine dinucleotide (NADH) by incorporation of neutral red in aluminum doped nanostructured ZnO thin films. V T F; T S C Biochim Biophys Acta Gen Subj; 2017 Jun; 1861(6):1559-1565. PubMed ID: 28062235 [TBL] [Abstract][Full Text] [Related]
60. Antibacterial activity and mechanism of Ag/ZnO nanocomposite against anaerobic oral pathogen Streptococcus mutans. Wang S; Wu J; Yang H; Liu X; Huang Q; Lu Z J Mater Sci Mater Med; 2017 Jan; 28(1):23. PubMed ID: 28044252 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]