These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 27427658)
41. Degradation of methylene blue using porous WO3, SiO2-WO3, and their Au-loaded analogs: adsorption and photocatalytic studies. DePuccio DP; Botella P; O'Rourke B; Landry CC ACS Appl Mater Interfaces; 2015 Jan; 7(3):1987-96. PubMed ID: 25549007 [TBL] [Abstract][Full Text] [Related]
42. Green synthesis of Au decorated CoFe Saire-Saire S; Barbosa ECM; Garcia D; Andrade LH; Garcia-Segura S; Camargo PHC; Alarcon H RSC Adv; 2019 Jul; 9(38):22116-22123. PubMed ID: 35518899 [TBL] [Abstract][Full Text] [Related]
43. Gold nanoparticles stabilized by poly(4-vinylpyridine) grafted cellulose nanocrystals as efficient and recyclable catalysts. Zhang Z; Sèbe G; Wang X; Tam KC Carbohydr Polym; 2018 Feb; 182():61-68. PubMed ID: 29279126 [TBL] [Abstract][Full Text] [Related]
44. Na Eduardo SB; El Hachimi AG; Monge M; López-de-Luzuriaga JM; Agarwal V; Bogireddy NKR Chemosphere; 2024 Oct; 367():143576. PubMed ID: 39428018 [TBL] [Abstract][Full Text] [Related]
45. Voltammetric determination of 4-nitrophenol using a glassy carbon electrode modified with a gold-ZnO-SiO Ghazizadeh AJ; Afkhami A; Bagheri H Mikrochim Acta; 2018 May; 185(6):296. PubMed ID: 29752544 [TBL] [Abstract][Full Text] [Related]
46. Alkanethiol-induced structural rearrangements in silica-gold core-shell-type nanoparticle clusters: an opportunity for chemical sensor engineering. Osterloh F; Hiramatsu H; Porter R; Guo T Langmuir; 2004 Jun; 20(13):5553-8. PubMed ID: 15986699 [TBL] [Abstract][Full Text] [Related]
47. Water-medium and solvent-free organic reactions over a bifunctional catalyst with Au nanoparticles covalently bonded to HS/SO3H functionalized periodic mesoporous organosilica. Zhu FX; Wang W; Li HX J Am Chem Soc; 2011 Aug; 133(30):11632-40. PubMed ID: 21707062 [TBL] [Abstract][Full Text] [Related]
48. A facile approach to TiO2 colloidal spheres decorated with Au nanoparticles displaying well-defined sizes and uniform dispersion. Damato TC; de Oliveira CC; Ando RA; Camargo PH Langmuir; 2013 Feb; 29(5):1642-9. PubMed ID: 23311597 [TBL] [Abstract][Full Text] [Related]
49. Facile Synthesis of Fe Xiong LL; Huang R; Chai HH; Yu L; Li CM ACS Omega; 2020 Aug; 5(33):20903-20911. PubMed ID: 32875225 [TBL] [Abstract][Full Text] [Related]
50. Double-walled hierarchical porous silica nanotubes loaded Au nanoparticles in the interlayer as a high-performance catalyst. Kong L; Guo Y; Wang X; Zhang X Nanotechnology; 2020 Jan; 31(1):015701. PubMed ID: 31514176 [TBL] [Abstract][Full Text] [Related]
51. Facile Synthesis of Au Nanoparticles Embedded in an Ultrathin Hollow Graphene Nanoshell with Robust Catalytic Performance. Liu H; Wang J; Feng Z; Lin Y; Zhang L; Su D Small; 2015 Oct; 11(38):5059-64. PubMed ID: 26280245 [TBL] [Abstract][Full Text] [Related]
52. Ligand-Free Nano-Au Catalysts on Nitrogen-Doped Graphene Filter for Continuous Flow Catalysis. Liu Y; Liu X; Yang S; Li F; Shen C; Ma C; Huang M; Sand W Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30189640 [TBL] [Abstract][Full Text] [Related]
53. Solid-solid synthesis of covalent organic framework as a support for growth of controllable ultrafine Au nanoparticles. Niu L; Zhao X; Tang Z; Wu F; Lei Q; Wang J; Wang X; Liang W; Wang X Sci Total Environ; 2022 Aug; 835():155423. PubMed ID: 35469885 [TBL] [Abstract][Full Text] [Related]
54. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Saha S; Pal A; Kundu S; Basu S; Pal T Langmuir; 2010 Feb; 26(4):2885-93. PubMed ID: 19957940 [TBL] [Abstract][Full Text] [Related]
55. A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Gupta VK; Atar N; Yola ML; Üstündağ Z; Uzun L Water Res; 2014 Jan; 48():210-7. PubMed ID: 24112627 [TBL] [Abstract][Full Text] [Related]
56. Covalent organic frameworks bearing pillar[6]arene-reduced Au nanoparticles for the catalytic reduction of nitroaromatics. Tan X; Zeng W; Fan Y; Yan J; Zhao G Nanotechnology; 2020 Mar; 31(13):135705. PubMed ID: 31816606 [TBL] [Abstract][Full Text] [Related]
57. A General Approach To Fabricate Fe3O4 Nanoparticles Decorated with Pd, Au, and Rh: Magnetically Recoverable and Reusable Catalysts for Suzuki C-C Cross-Coupling Reactions, Hydrogenation, and Sequential Reactions. Gonzàlez de Rivera F; Angurell I; Rossell MD; Erni R; Llorca J; Divins NJ; Muller G; Seco M; Rossell O Chemistry; 2013 Sep; 19(36):11963-74. PubMed ID: 23868578 [TBL] [Abstract][Full Text] [Related]
58. Controllable Assemblies of Au NPs/P5A for Enhanced Catalytic Reduction of 4-Nitrophenol. Liu Z; Li B; Zhang H Polymers (Basel); 2024 Jul; 16(15):. PubMed ID: 39125131 [TBL] [Abstract][Full Text] [Related]
59. Hierarchical porous carbon material restricted Au catalyst for highly catalytic reduction of nitroaromatics. Qin L; Yi H; Zeng G; Lai C; Huang D; Xu P; Fu Y; He J; Li B; Zhang C; Cheng M; Wang H; Liu X J Hazard Mater; 2019 Dec; 380():120864. PubMed ID: 31326837 [TBL] [Abstract][Full Text] [Related]
60. Preparation of highly active silica-supported Au catalysts for CO oxidation by a solution-based technique. Zhu H; Liang C; Yan W; Overbury SH; Dai S J Phys Chem B; 2006 Jun; 110(22):10842-8. PubMed ID: 16771335 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]