These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 27427753)

  • 1. Enhanced Intracellular Hyperthermia Efficiency by Magnetic Nanoparticles Modified with Nucleus and Mitochondria Targeting Peptides.
    Wang X; Zhou J; Chen B; Tang Z; Zhang J; Li L; Tang J
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6560-6. PubMed ID: 27427753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutaraldehyde mediated conjugation of amino-coated magnetic nanoparticles with albumin protein for nanothermotherapy.
    Zhao L; Yang B; Dai X; Wang X; Gao F; Zhang X; Tang J
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7117-20. PubMed ID: 21137877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vitro Study of Tumor-Homing Peptide-Modified Magnetic Nanoparticles for Magnetic Hyperthermia.
    Zhou S; Tsutsumiuchi K; Imai R; Miki Y; Kondo A; Nakagawa H; Watanabe K; Ohtsuki T
    Molecules; 2024 Jun; 29(11):. PubMed ID: 38893510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective magnetic hyperthermia induced by mitochondria-targeted nanoparticles modified with triphenylphosphonium-containing phospholipid polymers.
    Kaneko M; Yamazaki H; Ono T; Horie M; Ito A
    Cancer Sci; 2023 Sep; 114(9):3750-3758. PubMed ID: 37409483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small versus Large Iron Oxide Magnetic Nanoparticles: Hyperthermia and Cell Uptake Properties.
    Iacovita C; Florea A; Dudric R; Pall E; Moldovan AI; Tetean R; Stiufiuc R; Lucaciu CM
    Molecules; 2016 Oct; 21(10):. PubMed ID: 27754394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The efficiency of magnetic hyperthermia and in vivo histocompatibility for human-like collagen protein-coated magnetic nanoparticles.
    Chang L; Liu XL; Di Fan D; Miao YQ; Zhang H; Ma HP; Liu QY; Ma P; Xue WM; Luo YE; Fan HM
    Int J Nanomedicine; 2016; 11():1175-85. PubMed ID: 27042065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface functionalized magnetic nanoparticles shift cell behavior with on/off magnetic fields.
    Jeon S; Subbiah R; Bonaedy T; Van S; Park K; Yun K
    J Cell Physiol; 2018 Feb; 233(2):1168-1178. PubMed ID: 28464242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial exopolysaccharide based magnetic nanoparticles: a versatile nanotool for cancer cell imaging, targeted drug delivery and synergistic effect of drug and hyperthermia mediated cancer therapy.
    Sivakumar B; Aswathy RG; Sreejith R; Nagaoka Y; Iwai S; Suzuki M; Fukuda T; Hasumura T; Yoshida Y; Maekawa T; Sakthikumar DN
    J Biomed Nanotechnol; 2014 Jun; 10(6):885-99. PubMed ID: 24749386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2-Deoxy-D-Glucose Modified Magnetic Nanoparticles with Dual Functional Properties: Nanothermotherapy and Magnetic Resonance Imaging.
    Zhao L; Zheng Y; Yan H; Xie W; Sun X; Li N; Tang J
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2401-7. PubMed ID: 27455648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smart Design of a pH-Responsive System Based on pHLIP-Modified Magnetite Nanoparticles for Tumor MRI.
    Demin AM; Pershina AG; Minin AS; Brikunova OY; Murzakaev AM; Perekucha NA; Romashchenko AV; Shevelev OB; Uimin MA; Byzov IV; Malkeyeva D; Kiseleva E; Efimova LV; Vtorushin SV; Ogorodova LM; Krasnov VP
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):36800-36815. PubMed ID: 34324807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro anti-cancer efficacy of multi-functionalized magnetite nanoparticles combining alternating magnetic hyperthermia in glioblastoma cancer cells.
    Minaei SE; Khoei S; Khoee S; Vafashoar F; Mahabadi VP
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():575-587. PubMed ID: 31029351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous dimer peptide-conjugated polylysine dendrimer-Fe
    Shen JM; Li XX; Fan LL; Zhou X; Han JM; Jia MK; Wu LF; Zhang XX; Chen J
    Int J Nanomedicine; 2017; 12():1183-1200. PubMed ID: 28243083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Subcellular Targeting to the Cell Nucleus of Quantum Dots Densely Decorated with a Nuclear Localization Sequence Peptide.
    Maity AR; Stepensky D
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2001-9. PubMed ID: 26731220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implications of protein corona on physico-chemical and biological properties of magnetic nanoparticles.
    Yallapu MM; Chauhan N; Othman SF; Khalilzad-Sharghi V; Ebeling MC; Khan S; Jaggi M; Chauhan SC
    Biomaterials; 2015 Apr; 46():1-12. PubMed ID: 25678111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multilayered inorganic-organic microdisks as ideal carriers for high magnetothermal actuation: assembling ferrimagnetic nanoparticles devoid of dipolar interactions.
    Castellanos-Rubio I; Munshi R; Qin Y; Eason DB; Orue I; Insausti M; Pralle A
    Nanoscale; 2018 Nov; 10(46):21879-21892. PubMed ID: 30457620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia.
    Makridis A; Chatzitheodorou I; Topouridou K; Yavropoulou MP; Angelakeris M; Dendrinou-Samara C
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():663-70. PubMed ID: 27040263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic hyperthermia and pH-responsive effective drug delivery to the sub-cellular level of human breast cancer cells by modified CoFe
    Oh Y; Moorthy MS; Manivasagan P; Bharathiraja S; Oh J
    Biochimie; 2017 Feb; 133():7-19. PubMed ID: 27916642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted removal of leukemia cells from the circulating system by whole-body magnetic hyperthermia in mice.
    Al Faruque H; Choi ES; Lee HR; Kim JH; Park S; Kim E
    Nanoscale; 2020 Jan; 12(4):2773-2786. PubMed ID: 31957767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of hyperthermia of magnetic nanoparticles by dehydrating DNA.
    Yu L; Liu J; Wu K; Klein T; Jiang Y; Wang JP
    Sci Rep; 2014 Nov; 4():7216. PubMed ID: 25427561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimal-invasive magnetic heating of tumors does not alter intra-tumoral nanoparticle accumulation, allowing for repeated therapy sessions: an in vivo study in mice.
    Kettering M; Richter H; Wiekhorst F; Bremer-Streck S; Trahms L; Kaiser WA; Hilger I
    Nanotechnology; 2011 Dec; 22(50):505102. PubMed ID: 22107782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.