BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

614 related articles for article (PubMed ID: 27427771)

  • 41. Genetic and Clinical Characteristics of Patients with Philadelphia-Negative Myeloproliferative Neoplasm Carrying Concurrent Mutations in
    Wang Y; Ran F; Lin J; Zhang J; Ma D
    Technol Cancer Res Treat; 2023; 22():15330338231154092. PubMed ID: 36744404
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mutation Profile in BCR-ABL1-Negative Myeloproliferative Neoplasms: A Single-Center Experience From India.
    Maddali M; Kulkarni UP; Ravindra N; Arunachalam AK; Venkatraman A; Lionel S; Manipadam MT; Devasia AJ; Korula A; Fouzia NA; Abraham A; Srivastava A; George B; Balasubramanian P; Mathews V
    Hematol Oncol Stem Cell Ther; 2022 Jun; 15(2):13-20. PubMed ID: 33789164
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Clonal analyses define the relationships between chromosomal abnormalities and JAK2V617F in patients with Ph-negative myeloproliferative neoplasms.
    Wang X; LeBlanc A; Gruenstein S; Xu M; Mascarenhas J; Panzera B; Wisch N; Parker C; Goldberg JD; Prchal J; Hoffman R; Najfeld V
    Exp Hematol; 2009 Oct; 37(10):1194-200. PubMed ID: 19615425
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Differential NOD/SCID mouse engraftment of peripheral blood CD34+ cells and JAK2V617F clones from patients with myeloproliferative neoplasms.
    Fung TK; Cheung AM; Kwong YL; Liang R; Leung AY
    Leuk Res; 2010 Oct; 34(10):1390-4. PubMed ID: 20170959
    [TBL] [Abstract][Full Text] [Related]  

  • 45. JAK2V617F but not CALR mutations confer increased molecular responses to interferon-α via JAK1/STAT1 activation.
    Czech J; Cordua S; Weinbergerova B; Baumeister J; Crepcia A; Han L; Maié T; Costa IG; Denecke B; Maurer A; Schubert C; Feldberg K; Gezer D; Brümmendorf TH; Müller-Newen G; Mayer J; Racil Z; Kubesova B; Knudsen T; Sørensen AL; Holmström M; Kjær L; Skov V; Larsen TS; Hasselbalch HC; Chatain N; Koschmieder S
    Leukemia; 2019 Apr; 33(4):995-1010. PubMed ID: 30470838
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Detection and clinical significance of JAK2 mutation in 412 patients with chronic myeloproliferative neoplasms].
    Chao HY; Fan Z; Zhang R; Shen YM; Chen W; Fei HR; Zhu ZL; Feng YF; Chen ZX; Xue YQ
    Zhonghua Zhong Liu Za Zhi; 2009 Jul; 31(7):510-4. PubMed ID: 19950698
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thromboses and hemorrhages are common in MPN patients with high JAK2V617F allele burden.
    Bertozzi I; Bogoni G; Biagetti G; Duner E; Lombardi AM; Fabris F; Randi ML
    Ann Hematol; 2017 Aug; 96(8):1297-1302. PubMed ID: 28585070
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CALR mutational status identifies different disease subtypes of essential thrombocythemia showing distinct expression profiles.
    Zini R; Guglielmelli P; Pietra D; Rumi E; Rossi C; Rontauroli S; Genovese E; Fanelli T; Calabresi L; Bianchi E; Salati S; Cazzola M; Tagliafico E; Vannucchi AM; Manfredini R;
    Blood Cancer J; 2017 Dec; 7(12):638. PubMed ID: 29217833
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Clinical Manifestations and Risk Factors for Complications of Philadelphia Chromosome-Negative Myeloproliferative Neoplasms.
    Duangnapasatit B; Rattarittamrong E; Rattanathammethee T; Hantrakool S; Chai-Adisaksopha C; Tantiworawit A; Norasetthada L
    Asian Pac J Cancer Prev; 2015; 16(12):5013-8. PubMed ID: 26163633
    [TBL] [Abstract][Full Text] [Related]  

  • 50. JAK2 and MPL mutations in myeloproliferative neoplasms: discovery and science.
    Kilpivaara O; Levine RL
    Leukemia; 2008 Oct; 22(10):1813-7. PubMed ID: 18754026
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CALR exon 9 mutations are somatically acquired events in familial cases of essential thrombocythemia or primary myelofibrosis.
    Rumi E; Harutyunyan AS; Pietra D; Milosevic JD; Casetti IC; Bellini M; Them NC; Cavalloni C; Ferretti VV; Milanesi C; Berg T; Sant'Antonio E; Boveri E; Pascutto C; Astori C; Kralovics R; Cazzola M;
    Blood; 2014 Apr; 123(15):2416-9. PubMed ID: 24553179
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The different variant allele frequencies of type I/type II mutations and the distinct molecular landscapes in
    Pan Y; Wang X; Wen S; Liu X; Yang L; Luo J
    Hematology; 2022 Dec; 27(1):902-908. PubMed ID: 36000955
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Epidemiology and clinical relevance of mutations in postpolycythemia vera and postessential thrombocythemia myelofibrosis: A study on 359 patients of the AGIMM group.
    Rotunno G; Pacilli A; Artusi V; Rumi E; Maffioli M; Delaini F; Brogi G; Fanelli T; Pancrazzi A; Pietra D; Bernardis I; Belotti C; Pieri L; Sant'Antonio E; Salmoiraghi S; Cilloni D; Rambaldi A; Passamonti F; Barbui T; Manfredini R; Cazzola M; Tagliafico E; Vannucchi AM; Guglielmelli P
    Am J Hematol; 2016 Jul; 91(7):681-6. PubMed ID: 27037840
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Progenitor genotyping reveals a complex clonal architecture in a subset of CALR-mutated myeloproliferative neoplasms.
    Martin S; Wright CM; Scott LM
    Br J Haematol; 2017 Apr; 177(1):55-66. PubMed ID: 28168700
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Application of an NGS-based 28-gene panel in myeloproliferative neoplasms reveals distinct mutation patterns in essential thrombocythaemia, primary myelofibrosis and polycythaemia vera.
    Delic S; Rose D; Kern W; Nadarajah N; Haferlach C; Haferlach T; Meggendorfer M
    Br J Haematol; 2016 Nov; 175(3):419-426. PubMed ID: 27447873
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Clinicopathological differences exist between CALR- and JAK2-mutated myeloproliferative neoplasms despite a similar molecular landscape: data from targeted next-generation sequencing in the diagnostic laboratory.
    Agarwal R; Blombery P; McBean M; Jones K; Fellowes A; Doig K; Forsyth C; Westerman DA
    Ann Hematol; 2017 May; 96(5):725-732. PubMed ID: 28161773
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vascular Endothelial Dysfunction in Myeloproliferative Neoplasms and Gene Mutations.
    Aoyama R; Kubota Y; Tara S; Wakita S; Yamaguchi H; Shimizu W; Takano H
    Int Heart J; 2022 Jul; 63(4):661-668. PubMed ID: 35831151
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Expression of CALR mutants causes mpl-dependent thrombocytosis in zebrafish.
    Lim KH; Chang YC; Chiang YH; Lin HC; Chang CY; Lin CS; Huang L; Wang WT; Gon-Shen Chen C; Chou WC; Kuo YY
    Blood Cancer J; 2016 Oct; 6(10):e481. PubMed ID: 27716741
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Pathological characteristics of megakaryocytes in myeloproliferative neoplasms and their correlation with driver gene mutations].
    Shi ZX; Zhang PH; Li B; Fang LH; Xu ZF; Qin TJ; Liu JQ; Hu NB; Pan LJ; Qu SQ; Liu D; Xiao ZJ
    Zhonghua Xue Ye Xue Za Zhi; 2020 Oct; 41(10):798-805. PubMed ID: 33190435
    [No Abstract]   [Full Text] [Related]  

  • 60. Phenotypic variability within the JAK2 V617F-positive MPD: roles of progenitor cell and neutrophil allele burdens.
    Moliterno AR; Williams DM; Rogers O; Isaacs MA; Spivak JL
    Exp Hematol; 2008 Nov; 36(11):1480-6. PubMed ID: 18723264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.