These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 27427777)
1. Comparison of arsenate reduction and release by three As(V)-reducing bacteria isolated from arsenic-contaminated soil of Inner Mongolia, China. Cai X; Zhang Z; Yin N; Du H; Li Z; Cui Y Chemosphere; 2016 Oct; 161():200-207. PubMed ID: 27427777 [TBL] [Abstract][Full Text] [Related]
2. Role of indigenous arsenate and iron(III) respiring microorganisms in controlling the mobilization of arsenic in a contaminated soil sample. Vaxevanidou K; Christou C; Kremmydas GF; Georgakopoulos DG; Papassiopi N Bull Environ Contam Toxicol; 2015 Mar; 94(3):282-8. PubMed ID: 25588567 [TBL] [Abstract][Full Text] [Related]
3. Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. Banerjee S; Datta S; Chattyopadhyay D; Sarkar P J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(14):1736-47. PubMed ID: 22175878 [TBL] [Abstract][Full Text] [Related]
4. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. Fan H; Su C; Wang Y; Yao J; Zhao K; Wang Y; Wang G J Appl Microbiol; 2008 Aug; 105(2):529-39. PubMed ID: 18397256 [TBL] [Abstract][Full Text] [Related]
5. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Anderson CR; Cook GM Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729 [TBL] [Abstract][Full Text] [Related]
6. Arsenic redox transformation by Pseudomonas sp. HN-2 isolated from arsenic-contaminated soil in Hunan, China. Zhang Z; Yin N; Cai X; Wang Z; Cui Y J Environ Sci (China); 2016 Sep; 47():165-173. PubMed ID: 27593283 [TBL] [Abstract][Full Text] [Related]
7. Identification of anaerobic arsenite-oxidizing and arsenate-reducing bacteria associated with an alkaline saline lake in Khovsgol, Mongolia. Hamamura N; Itai T; Liu Y; Reysenbach AL; Damdinsuren N; Inskeep WP Environ Microbiol Rep; 2014 Oct; 6(5):476-82. PubMed ID: 25646538 [TBL] [Abstract][Full Text] [Related]
8. Bacillus sp. SXB and Pantoea sp. IMH, aerobic As(V)-reducing bacteria isolated from arsenic-contaminated soil. Wu Q; Du J; Zhuang G; Jing C J Appl Microbiol; 2013 Mar; 114(3):713-21. PubMed ID: 23210693 [TBL] [Abstract][Full Text] [Related]
9. Diversity and arsenic-metabolizing gene clusters of indigenous arsenate-reducing bacteria in high arsenic groundwater of the Hetao Plain, Inner Mongolia. Wang Y; Wei D; Li P; Jiang Z; Liu H; Qing C; Wang H Ecotoxicology; 2021 Oct; 30(8):1680-1688. PubMed ID: 33196984 [TBL] [Abstract][Full Text] [Related]
10. As(V) Resistance and Reduction by Bacteria and Their Performances in As Removal from As-Contaminated Soils. Gao P; Zeng X; Bai L; Wang Y; Wu C; Duan R; Su S Curr Microbiol; 2017 Sep; 74(9):1108-1113. PubMed ID: 28676887 [TBL] [Abstract][Full Text] [Related]
11. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. Liao VH; Chu YJ; Su YC; Hsiao SY; Wei CC; Liu CW; Liao CM; Shen WC; Chang FJ J Contam Hydrol; 2011 Apr; 123(1-2):20-9. PubMed ID: 21216490 [TBL] [Abstract][Full Text] [Related]
12. Identification of arsenic resistant endophytic bacteria from Pteris vittata roots and characterization for arsenic remediation application. Tiwari S; Sarangi BK; Thul ST J Environ Manage; 2016 Sep; 180():359-65. PubMed ID: 27257820 [TBL] [Abstract][Full Text] [Related]
13. Expression of Genes and Proteins Involved in Arsenic Respiration and Resistance in Dissimilatory Arsenate-Reducing Tsuchiya T; Ehara A; Kasahara Y; Hamamura N; Amachi S Appl Environ Microbiol; 2019 Jul; 85(14):. PubMed ID: 31101608 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production. Román-Ponce B; Ramos-Garza J; Arroyo-Herrera I; Maldonado-Hernández J; Bahena-Osorio Y; Vásquez-Murrieta MS; Wang ET Arch Microbiol; 2018 Aug; 200(6):883-895. PubMed ID: 29476206 [TBL] [Abstract][Full Text] [Related]
15. Arsenate reduction and mobilization in the presence of indigenous aerobic bacteria obtained from high arsenic aquifers of the Hetao basin, Inner Mongolia. Guo H; Liu Z; Ding S; Hao C; Xiu W; Hou W Environ Pollut; 2015 Aug; 203():50-59. PubMed ID: 25863882 [TBL] [Abstract][Full Text] [Related]
16. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Yang YP; Zhang HM; Yuan HY; Duan GL; Jin DC; Zhao FJ; Zhu YG Environ Pollut; 2018 May; 236():598-608. PubMed ID: 29433100 [TBL] [Abstract][Full Text] [Related]
17. The fate of arsenic adsorbed on iron oxides in the presence of arsenite-oxidizing bacteria. Zhang Z; Yin N; Du H; Cai X; Cui Y Chemosphere; 2016 May; 151():108-15. PubMed ID: 26933901 [TBL] [Abstract][Full Text] [Related]
18. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil. Zhang J; Zhou W; Liu B; He J; Shen Q; Zhao FJ Environ Sci Technol; 2015 May; 49(10):5956-64. PubMed ID: 25905768 [TBL] [Abstract][Full Text] [Related]
19. arrA is a reliable marker for As(V) respiration. Malasarn D; Saltikov CW; Campbell KM; Santini JM; Hering JG; Newman DK Science; 2004 Oct; 306(5695):455. PubMed ID: 15486292 [TBL] [Abstract][Full Text] [Related]
20. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. Cai L; Liu G; Rensing C; Wang G BMC Microbiol; 2009 Jan; 9():4. PubMed ID: 19128515 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]