These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 27427858)

  • 1. LOVTRAP: an optogenetic system for photoinduced protein dissociation.
    Wang H; Vilela M; Winkler A; Tarnawski M; Schlichting I; Yumerefendi H; Kuhlman B; Liu R; Danuser G; Hahn KM
    Nat Methods; 2016 Sep; 13(9):755-8. PubMed ID: 27427858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition and activation of Rho GTPases by Vav1 and Vav2 guanine nucleotide exchange factors.
    Heo J; Thapar R; Campbell SL
    Biochemistry; 2005 May; 44(17):6573-85. PubMed ID: 15850391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Optogenetic Protein Analogs.
    Liu B; Marston DJ; Hahn KM
    Methods Mol Biol; 2020; 2173():113-126. PubMed ID: 32651913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LOVTRAP: A Versatile Method to Control Protein Function with Light.
    Wang H; Hahn KM
    Curr Protoc Cell Biol; 2016 Dec; 73():21.10.1-21.10.14. PubMed ID: 27906450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Inactivation by Optogenetic Trapping in Living Cells.
    Park H; Lee S; Heo WD
    Methods Mol Biol; 2016; 1408():363-76. PubMed ID: 26965136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Essential role of Vav family guanine nucleotide exchange factors in EphA receptor-mediated angiogenesis.
    Hunter SG; Zhuang G; Brantley-Sieders D; Swat W; Cowan CW; Chen J
    Mol Cell Biol; 2006 Jul; 26(13):4830-42. PubMed ID: 16782872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and structural basis for a novel interaction between Vav2 and Arap3.
    Wu B; Wang F; Zhang J; Zhang Z; Qin L; Peng J; Li F; Liu J; Lu G; Gong Q; Yao X; Wu J; Shi Y
    J Struct Biol; 2012 Oct; 180(1):84-95. PubMed ID: 22750419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical Control of Transcription: Genetically Encoded Photoswitchable Variants of T7 RNA Polymerase.
    Seifert S; Ehrt C; Lückfeldt L; Lubeck M; Schramm F; Brakmann S
    Chembiochem; 2019 Nov; 20(22):2813-2817. PubMed ID: 31192518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Optogenetic Tool for Induced Protein Stabilization Based on the Phaeodactylum tricornutum Aureochrome 1a Light-Oxygen-Voltage Domain.
    Hepp S; Trauth J; Hasenjäger S; Bezold F; Essen LO; Taxis C
    J Mol Biol; 2020 Mar; 432(7):1880-1900. PubMed ID: 32105734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered photoreceptors as novel optogenetic tools.
    Möglich A; Moffat K
    Photochem Photobiol Sci; 2010 Oct; 9(10):1286-300. PubMed ID: 20835487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local phosphatidylinositol 3,4,5-trisphosphate accumulation recruits Vav2 and Vav3 to activate Rac1/Cdc42 and initiate neurite outgrowth in nerve growth factor-stimulated PC12 cells.
    Aoki K; Nakamura T; Fujikawa K; Matsuda M
    Mol Biol Cell; 2005 May; 16(5):2207-17. PubMed ID: 15728722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How Vav proteins discriminate the GTPases Rac1 and RhoA from Cdc42.
    Movilla N; Dosil M; Zheng Y; Bustelo XR
    Oncogene; 2001 Dec; 20(56):8057-65. PubMed ID: 11781818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remedial strategies in structural proteomics: expression, purification, and crystallization of the Vav1/Rac1 complex.
    Brooun A; Foster SA; Chrencik JE; Chien EY; Kolatkar AR; Streiff M; Ramage P; Widmer H; Weckbecker G; Kuhn P
    Protein Expr Purif; 2007 May; 53(1):51-62. PubMed ID: 17275330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multidirectional Activity Control of Cellular Processes by a Versatile Chemo-optogenetic Approach.
    Chen X; Venkatachalapathy M; Dehmelt L; Wu YW
    Angew Chem Int Ed Engl; 2018 Sep; 57(37):11993-11997. PubMed ID: 30048030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optogenetics: optical control of a photoactivatable Rac in living cells.
    Yin T; Wu YI
    Methods Mol Biol; 2015; 1251():277-89. PubMed ID: 25391805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guidelines for Photoreceptor Engineering.
    Ziegler T; Schumacher CH; Möglich A
    Methods Mol Biol; 2016; 1408():389-403. PubMed ID: 26965138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural Resources for Optogenetic Tools.
    Mathes T
    Methods Mol Biol; 2016; 1408():19-36. PubMed ID: 26965113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HER2/Neu (ErbB2) signaling to Rac1-Pak1 is temporally and spatially modulated by transforming growth factor beta.
    Wang SE; Shin I; Wu FY; Friedman DB; Arteaga CL
    Cancer Res; 2006 Oct; 66(19):9591-600. PubMed ID: 17018616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Balanced Vav2 GEF activity regulates neurite outgrowth and branching in vitro and in vivo.
    Moon MS; Gomez TM
    Mol Cell Neurosci; 2010 Jun; 44(2):118-28. PubMed ID: 20298788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Mechanism of Photozipper, a Light-Regulated Dimerizing Module Consisting of the bZIP and LOV Domains of Aureochrome-1.
    Nakatani Y; Hisatomi O
    Biochemistry; 2015 Jun; 54(21):3302-13. PubMed ID: 25932652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.