These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 27427914)
1. Model Vestibular Nuclei Neurons Can Exhibit a Boosting Nonlinearity Due to an Adaptation Current Regulated by Spike-Triggered Calcium and Calcium-Activated Potassium Channels. Schneider AD PLoS One; 2016; 11(7):e0159300. PubMed ID: 27427914 [TBL] [Abstract][Full Text] [Related]
2. Regulation of firing response gain by calcium-dependent mechanisms in vestibular nucleus neurons. Smith MR; Nelson AB; Du Lac S J Neurophysiol; 2002 Apr; 87(4):2031-42. PubMed ID: 11929921 [TBL] [Abstract][Full Text] [Related]
3. Compartmental models of type A and type B guinea pig medial vestibular neurons. Quadroni R; Knöpfel T J Neurophysiol; 1994 Oct; 72(4):1911-24. PubMed ID: 7529823 [TBL] [Abstract][Full Text] [Related]
4. A computational model for how the fast afterhyperpolarization paradoxically increases gain in regularly firing neurons. Jaffe DB; Brenner R J Neurophysiol; 2018 Apr; 119(4):1506-1520. PubMed ID: 29357445 [TBL] [Abstract][Full Text] [Related]
5. Relationship between afterhyperpolarization profiles and the regularity of spontaneous firings in rat medial vestibular nucleus neurons. Saito Y; Takazawa T; Ozawa S Eur J Neurosci; 2008 Jul; 28(2):288-98. PubMed ID: 18702700 [TBL] [Abstract][Full Text] [Related]
6. Intrinsic firing dynamics of vestibular nucleus neurons. Sekirnjak C; du Lac S J Neurosci; 2002 Mar; 22(6):2083-95. PubMed ID: 11896148 [TBL] [Abstract][Full Text] [Related]
7. Resonance of spike discharge modulation in neurons of the guinea pig medial vestibular nucleus. Ris L; Hachemaoui M; Vibert N; Godaux E; Vidal PP; Moore LE J Neurophysiol; 2001 Aug; 86(2):703-16. PubMed ID: 11495944 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of the exponential integrate-and-fire model with slow currents and adaptation. Barranca VJ; Johnson DC; Moyher JL; Sauppe JP; Shkarayev MS; Kovačič G; Cai D J Comput Neurosci; 2014 Aug; 37(1):161-80. PubMed ID: 24443127 [TBL] [Abstract][Full Text] [Related]
9. Contribution of apamin-sensitive SK channels to the firing precision but not to the slow afterhyperpolarization and spike frequency adaptation in snail neurons. Vatanparast J; Janahmadi M Brain Res; 2009 Feb; 1255():57-66. PubMed ID: 19100724 [TBL] [Abstract][Full Text] [Related]
10. Spike patterning in oxytocin neurons: Capturing physiological behaviour with Hodgkin-Huxley and integrate-and-fire models. Leng T; Leng G; MacGregor DJ PLoS One; 2017; 12(7):e0180368. PubMed ID: 28683135 [TBL] [Abstract][Full Text] [Related]
11. Linear versus nonlinear signal transmission in neuron models with adaptation currents or dynamic thresholds. Benda J; Maler L; Longtin A J Neurophysiol; 2010 Nov; 104(5):2806-20. PubMed ID: 21045213 [TBL] [Abstract][Full Text] [Related]
12. Differential regulation of action potential firing in adult murine thalamocortical neurons by Kv3.2, Kv1, and SK potassium and N-type calcium channels. Kasten MR; Rudy B; Anderson MP J Physiol; 2007 Oct; 584(Pt 2):565-82. PubMed ID: 17761775 [TBL] [Abstract][Full Text] [Related]
13. Computational modeling of spike generation in serotonergic neurons of the dorsal raphe nucleus. Tuckwell HC; Penington NJ Prog Neurobiol; 2014 Jul; 118():59-101. PubMed ID: 24784445 [TBL] [Abstract][Full Text] [Related]
14. Calcium window currents, periodic forcing, and chaos: understanding single neuron response with a discontinuous one-dimensional map. Laudanski J; Sumner C; Coombes S Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011924. PubMed ID: 20866665 [TBL] [Abstract][Full Text] [Related]
15. The differential expression of low-threshold sustained potassium current contributes to the distinct firing patterns in embryonic central vestibular neurons. Gamkrelidze G; Giaume C; Peusner KD J Neurosci; 1998 Feb; 18(4):1449-64. PubMed ID: 9454854 [TBL] [Abstract][Full Text] [Related]
16. BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells. Gu N; Vervaeke K; Storm JF J Physiol; 2007 May; 580(Pt.3):859-82. PubMed ID: 17303637 [TBL] [Abstract][Full Text] [Related]
17. A small-conductance Ca2+-dependent K+ current regulates dopamine neuron activity: a combined approach of dynamic current clamping and intracellular imaging of calcium signals. Tateno T Neuroreport; 2010 Jul; 21(10):667-74. PubMed ID: 20508546 [TBL] [Abstract][Full Text] [Related]
18. Spike-frequency adaptation of a two-compartment neuron modulated by extracellular electric fields. Yi G; Wang J; Tsang KM; Wei X; Deng B; Han C Biol Cybern; 2015 Jun; 109(3):287-306. PubMed ID: 25652337 [TBL] [Abstract][Full Text] [Related]
19. Small conductance potassium channels cause an activity-dependent spike frequency adaptation and make the transfer function of neurons logarithmic. Engel J; Schultens HA; Schild D Biophys J; 1999 Mar; 76(3):1310-9. PubMed ID: 10049314 [TBL] [Abstract][Full Text] [Related]
20. Calcium influx through N-type channels and activation of SK and TRP-like channels regulates tonic firing of neurons in rat paraventricular thalamus. Wong AY; Borduas JF; Clarke S; Lee KF; Béïque JC; Bergeron R J Neurophysiol; 2013 Nov; 110(10):2450-64. PubMed ID: 24004531 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]