BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 27427999)

  • 1. Combined Transcriptomic and Proteomic Analysis of the Posterior Salivary Gland from the Southern Blue-Ringed Octopus and the Southern Sand Octopus.
    Whitelaw BL; Strugnell JM; Faou P; da Fonseca RR; Hall NE; Norman M; Finn J; Cooke IR
    J Proteome Res; 2016 Sep; 15(9):3284-97. PubMed ID: 27427999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shotgun Proteomics Analysis of Saliva and Salivary Gland Tissue from the Common Octopus Octopus vulgaris.
    Fingerhut LCHW; Strugnell JM; Faou P; Labiaga ÁR; Zhang J; Cooke IR
    J Proteome Res; 2018 Nov; 17(11):3866-3876. PubMed ID: 30220204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive venom evolution and toxicity in octopods is driven by extensive novel gene formation, expansion, and loss.
    Whitelaw BL; Cooke IR; Finn J; da Fonseca RR; Ritschard EA; Gilbert MTP; Simakov O; Strugnell JM
    Gigascience; 2020 Nov; 9(11):. PubMed ID: 33175168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maculotoxin: a neurotoxin from the venom glands of the octopus Hapalochlaena maculosa identified as tetrodotoxin.
    Sheumack DD; Howden ME; Spence I; Quinn RJ
    Science; 1978 Jan; 199(4325):188-9. PubMed ID: 619451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of tetrodotoxin in the body of the blue-ringed octopus (Hapalochlaena maculosa).
    Yotsu-Yamashita M; Mebs D; Flachsenberger W
    Toxicon; 2007 Mar; 49(3):410-2. PubMed ID: 17188731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the nature of "maculotoxin", a toxin from the blue-ringed octopus (Hapalochlaena maculosa).
    Crone HD; Leake B; Jarvis MW; Freeman SE
    Toxicon; 1976; 14(6):423-6. PubMed ID: 1014030
    [No Abstract]   [Full Text] [Related]  

  • 7. Microdistribution of tetrodotoxin in two species of blue-ringed octopuses (Hapalochlaena lunulata and Hapalochlaena fasciata) detected by fluorescent immunolabeling.
    Williams BL; Stark MR; Caldwell RL
    Toxicon; 2012 Dec; 60(7):1307-13. PubMed ID: 22983011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histological structure of the posterior salivary glands in the blue ringed octopus Hapalochlaena maculosa Hoyle.
    Gibbs PJ; Greenaway P
    Toxicon; 1978; 16(1):59-70. PubMed ID: 622727
    [No Abstract]   [Full Text] [Related]  

  • 9. Toxicity and Toxin Composition of the Greater Blue-Ringed Octopus
    Asakawa M; Matsumoto T; Umezaki K; Kaneko K; Yu X; Gomez-Delan G; Tomano S; Noguchi T; Ohtsuka S
    Toxins (Basel); 2019 Apr; 11(5):. PubMed ID: 31035711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occurrence of a tetrodotoxin-like compound in the eggs of the venomous blue-ringed octopus (Hapalochlaena maculosa).
    Sheumack DD; Howden ME; Spence I
    Toxicon; 1984; 22(5):811-2. PubMed ID: 6441311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lack of effect of tetrodotoxin and of an extract from the posterior salivary gland of the blue-ringed octopus following injection into the octopus and following application to its brachial nerve.
    Flachsenberger W; Kerr DI
    Toxicon; 1985; 23(6):997-9. PubMed ID: 3006286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Survival after severe envenomation by the blue-ringed octopus (Hapalochlaena maculosa).
    Walker DG
    Med J Aust; 1983 Dec 10-24; 2(12):663-5. PubMed ID: 6669130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolution and origin of tetrodotoxin acquisition in the blue-ringed octopus (genus Hapalochlaena).
    Whitelaw BL; Cooke IR; Finn J; Zenger K; Strugnell JM
    Aquat Toxicol; 2019 Jan; 206():114-122. PubMed ID: 30472480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A combined proteomic and transcriptomic analysis of slime secreted by the southern bottletail squid, Sepiadarium austrinum (Cephalopoda).
    Caruana NJ; Cooke IR; Faou P; Finn J; Hall NE; Norman M; Pineda SS; Strugnell JM
    J Proteomics; 2016 Oct; 148():170-82. PubMed ID: 27476034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intra-organismal distribution of tetrodotoxin in two species of blue-ringed octopuses (Hapalochlaena fasciata and H. lunulata).
    Williams BL; Caldwell RL
    Toxicon; 2009 Sep; 54(3):345-53. PubMed ID: 19481562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetrodotoxin and the Geographic Distribution of the Blue-Lined Octopus
    Kim JH; Kim DW; Cho SR; Lee KJ; Mok JS
    Toxins (Basel); 2023 Apr; 15(4):. PubMed ID: 37104217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tentacles of venom: toxic protein convergence in the Kingdom Animalia.
    Fry BG; Roelants K; Norman JA
    J Mol Evol; 2009 Apr; 68(4):311-21. PubMed ID: 19294452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Venom-gland transcriptomics and venom proteomics of the black-back scorpion (Hadrurus spadix) reveal detectability challenges and an unexplored realm of animal toxin diversity.
    Rokyta DR; Ward MJ
    Toxicon; 2017 Mar; 128():23-37. PubMed ID: 28115184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting venom of the sea anemone Stichodactyla haddoni: Omics techniques reveal the complete toxin arsenal of a well-studied sea anemone genus.
    Madio B; Undheim EAB; King GF
    J Proteomics; 2017 Aug; 166():83-92. PubMed ID: 28739511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occurrence of amines in the posterior salivary glands of the octopus Hapalochlaena maculosa (cephalopoda).
    Howden ME; Williams PA
    Toxicon; 1974 May; 12(3):317-20. PubMed ID: 4617341
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.