These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Sublethal effects of a vapour-active pyrethroid, transfluthrin, on Aedes aegypti and Ae. albopictus (Diptera: Culicidae) fecundity and oviposition behaviour. Bibbs CS; Hahn DA; Kaufman PE; Xue RD Parasit Vectors; 2018 Aug; 11(1):486. PubMed ID: 30157907 [TBL] [Abstract][Full Text] [Related]
3. Insensitivity to the spatial repellent action of transfluthrin in Aedes aegypti: a heritable trait associated with decreased insecticide susceptibility. Wagman JM; Achee NL; Grieco JP PLoS Negl Trop Dis; 2015 Apr; 9(4):e0003726. PubMed ID: 25879206 [TBL] [Abstract][Full Text] [Related]
4. Metofluthrin: investigations into the use of a volatile spatial pyrethroid in a global spread of dengue, chikungunya and Zika viruses. Buhagiar TS; Devine GJ; Ritchie SA Parasit Vectors; 2017 May; 10(1):270. PubMed ID: 28558804 [TBL] [Abstract][Full Text] [Related]
5. Identifying the effective concentration for spatial repellency of the dengue vector Aedes aegypti. Achee N; Masuoka P; Smith P; Martin N; Chareonviryiphap T; Polsomboon S; Hendarto J; Grieco J Parasit Vectors; 2012 Dec; 5():300. PubMed ID: 23273133 [TBL] [Abstract][Full Text] [Related]
6. Effect of Aedes aegypti exposure to spatial repellent chemicals on BG-Sentinelâ„¢ trap catches. Salazar FV; Achee NL; Grieco JP; Prabaripai A; Ojo TA; Eisen L; Dureza C; Polsomboon S; Chareonviriyaphap T Parasit Vectors; 2013 May; 6():145. PubMed ID: 23688176 [TBL] [Abstract][Full Text] [Related]
7. Spatial repellency and other effects of transfluthrin and linalool on Aedes aegypti and Aedes albopictus. Estrada JLT; Moscoso KEP; Salas IF; Achee NL; Grieco JP J Vector Ecol; 2019 Jun; 44(1):89-93. PubMed ID: 31124222 [TBL] [Abstract][Full Text] [Related]
8. Behavioral responses to transfluthrin by Aedes aegypti, Anopheles minimus, Anopheles harrisoni, and Anopheles dirus (Diptera: Culicidae). Sukkanon C; Nararak J; Bangs MJ; Hii J; Chareonviriyaphap T PLoS One; 2020; 15(8):e0237353. PubMed ID: 32785255 [TBL] [Abstract][Full Text] [Related]
9. Semi-field evaluation of freestanding transfluthrin passive emanators and the BG sentinel trap as a "push-pull control strategy" against Aedes aegypti mosquitoes. Tambwe MM; Moore SJ; Chilumba H; Swai JK; Moore JD; Stica C; Saddler A Parasit Vectors; 2020 Jul; 13(1):392. PubMed ID: 32736580 [TBL] [Abstract][Full Text] [Related]
10. Model-based analysis of experimental data from interconnected, row-configured huts elucidates multifaceted effects of a volatile chemical on Aedes aegypti mosquitoes. Ten Bosch QA; Castro-Llanos F; Manda H; Morrison AC; Grieco JP; Achee NL; Perkins TA Parasit Vectors; 2018 Jun; 11(1):365. PubMed ID: 29941038 [TBL] [Abstract][Full Text] [Related]
11. Forced egg retention induced by diethyl-phenylacetamide diminishes the fecundity and longevity of dengue vectors. Seenivasagan T; Guha L J Vector Borne Dis; 2015 Dec; 52(4):309-13. PubMed ID: 26714511 [TBL] [Abstract][Full Text] [Related]
13. Oviposition site selection by the dengue vector Aedes aegypti and its implications for dengue control. Wong J; Stoddard ST; Astete H; Morrison AC; Scott TW PLoS Negl Trop Dis; 2011 Apr; 5(4):e1015. PubMed ID: 21532736 [TBL] [Abstract][Full Text] [Related]
14. Confusion, knock-down and kill of Aedes aegypti using metofluthrin in domestic settings: a powerful tool to prevent dengue transmission? Ritchie SA; Devine GJ Parasit Vectors; 2013 Sep; 6(1):262. PubMed ID: 24025232 [TBL] [Abstract][Full Text] [Related]
15. Oviposition-altering and ovicidal potentials of five essential oils against female adults of the dengue vector, Aedes aegypti L. Warikoo R; Wahab N; Kumar S Parasitol Res; 2011 Oct; 109(4):1125-31. PubMed ID: 21445613 [TBL] [Abstract][Full Text] [Related]
16. Forced egg retention and oviposition behavior of malaria, dengue and filariasis vectors to a topical repellent diethyl-phenylacetamide. Seenivasagan T; Iqbal ST; Guha L Indian J Exp Biol; 2015 Jul; 53(7):440-5. PubMed ID: 26245028 [TBL] [Abstract][Full Text] [Related]
17. Presence of a predator image in potential breeding sites and oviposition responses of a dengue vector. Dieng H; Satho T; Suradi NFB; Hakim H; Abang F; Aliasan NE; Miake F; Zuharah WF; Kassim NFA; Majid AHA; Fadzly N; Vargas REM; Morales NP; Noweg GT Acta Trop; 2017 Dec; 176():446-454. PubMed ID: 28865898 [TBL] [Abstract][Full Text] [Related]
18. Semi-field evaluation of the exposure-free mosquito electrocuting trap and BG-Sentinel trap as an alternative to the human landing catch for measuring the efficacy of transfluthrin emanators against Aedes aegypti. Tambwe MM; Saddler A; Kibondo UA; Mashauri R; Kreppel KS; Govella NJ; Moore SJ Parasit Vectors; 2021 May; 14(1):265. PubMed ID: 34016149 [TBL] [Abstract][Full Text] [Related]
19. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range. Eisen L; Moore CG J Med Entomol; 2013 May; 50(3):467-78. PubMed ID: 23802440 [TBL] [Abstract][Full Text] [Related]
20. The entomological impact of passive metofluthrin emanators against indoor Aedes aegypti: A randomized field trial. Devine GJ; Vazquez-Prokopec GM; Bibiano-MarÃn W; Pavia-Ruz N; Che-Mendoza A; Medina-Barreiro A; Villegas J; Gonzalez-Olvera G; Dunbar MW; Ong O; Ritchie SA; Churcher TS; Kirstein OD; Manrique-Saide P PLoS Negl Trop Dis; 2021 Jan; 15(1):e0009036. PubMed ID: 33497375 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]