BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 27428424)

  • 21. Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta.
    Tahirov TH; Inoue-Bungo T; Morii H; Fujikawa A; Sasaki M; Kimura K; Shiina M; Sato K; Kumasaka T; Yamamoto M; Ishii S; Ogata K
    Cell; 2001 Mar; 104(5):755-67. PubMed ID: 11257229
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Core binding factor beta functions in the maintenance of stem cells and orchestrates continuous proliferation and differentiation in mouse incisors.
    Kurosaka H; Islam MN; Kuremoto K; Hayano S; Nakamura M; Kawanabe N; Yanagita T; Rice DP; Harada H; Taniuchi I; Yamashiro T
    Stem Cells; 2011 Nov; 29(11):1792-803. PubMed ID: 21898689
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Runx Genes in Breast Cancer and the Mammary Lineage.
    Rooney N; Riggio AI; Mendoza-Villanueva D; Shore P; Cameron ER; Blyth K
    Adv Exp Med Biol; 2017; 962():353-368. PubMed ID: 28299668
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular characterization of cbfβ gene and identification of new transcription variants: implications for function.
    Simões B; Conceição N; Matias AC; Bragança J; Kelsh RN; Cancela ML
    Arch Biochem Biophys; 2015 Feb; 567():1-12. PubMed ID: 25575784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. HDAC1 Is a Required Cofactor of CBFβ-SMMHC and a Potential Therapeutic Target in Inversion 16 Acute Myeloid Leukemia.
    Richter LE; Wang Y; Becker ME; Coburn RA; Williams JT; Amador C; Hyde RK
    Mol Cancer Res; 2019 Jun; 17(6):1241-1252. PubMed ID: 30814129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of benzodiazepine Ro5-3335 as an inhibitor of CBF leukemia through quantitative high throughput screen against RUNX1-CBFβ interaction.
    Cunningham L; Finckbeiner S; Hyde RK; Southall N; Marugan J; Yedavalli VR; Dehdashti SJ; Reinhold WC; Alemu L; Zhao L; Yeh JR; Sood R; Pommier Y; Austin CP; Jeang KT; Zheng W; Liu P
    Proc Natl Acad Sci U S A; 2012 Sep; 109(36):14592-7. PubMed ID: 22912405
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure and backbone dynamics of Apo-CBFbeta in solution.
    Wolf-Watz M; Grundström T; Härd T
    Biochemistry; 2001 Sep; 40(38):11423-32. PubMed ID: 11560490
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RUNX transcription factors at the interface of stem cells and cancer.
    Deltcheva E; Nimmo R
    Biochem J; 2017 May; 474(11):1755-1768. PubMed ID: 28490659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The RUNX1 Runt domain at 1.25A resolution: a structural switch and specifically bound chloride ions modulate DNA binding.
    Bäckström S; Wolf-Watz M; Grundström C; Härd T; Grundström T; Sauer UH
    J Mol Biol; 2002 Sep; 322(2):259-72. PubMed ID: 12217689
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RUNX expression and function in human B cells.
    Whiteman HJ; Farrell PJ
    Crit Rev Eukaryot Gene Expr; 2006; 16(1):31-44. PubMed ID: 16584381
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frequent downregulation of the runt domain transcription factors RUNX1, RUNX3 and their cofactor CBFB in gastric cancer.
    Sakakura C; Hagiwara A; Miyagawa K; Nakashima S; Yoshikawa T; Kin S; Nakase Y; Ito K; Yamagishi H; Yazumi S; Chiba T; Ito Y
    Int J Cancer; 2005 Jan; 113(2):221-8. PubMed ID: 15386419
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic compensation of RUNX family transcription factors in leukemia.
    Kamikubo Y
    Cancer Sci; 2018 Aug; 109(8):2358-2363. PubMed ID: 29883054
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Runx1 mediates the development of the granular convoluted tubules in the submandibular glands.
    Ono Minagi H; Sarper SE; Kurosaka H; Kuremoto KI; Taniuchi I; Sakai T; Yamashiro T
    PLoS One; 2017; 12(9):e0184395. PubMed ID: 28877240
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Core binding factor in the early avian embryo: cloning of Cbfbeta and combinatorial expression patterns with Runx1.
    Bollerot K; Romero S; Dunon D; Jaffredo T
    Gene Expr Patterns; 2005 Dec; 6(1):29-39. PubMed ID: 16033710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physical and functional interactions between STAT5 and Runx transcription factors.
    Ogawa S; Satake M; Ikuta K
    J Biochem; 2008 May; 143(5):695-709. PubMed ID: 18296717
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamic investigation of DNA-binding affinity of wild-type and mutant transcription factor RUNX1.
    Wu F; Song T; Yao Y; Song Y
    PLoS One; 2019; 14(5):e0216203. PubMed ID: 31048839
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Runx proteins regulate Foxp3 expression.
    Bruno L; Mazzarella L; Hoogenkamp M; Hertweck A; Cobb BS; Sauer S; Hadjur S; Leleu M; Naoe Y; Telfer JC; Bonifer C; Taniuchi I; Fisher AG; Merkenschlager M
    J Exp Med; 2009 Oct; 206(11):2329-37. PubMed ID: 19841090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Core binding factor β (CBFβ) is retained in the midbody during cytokinesis.
    Lopez-Camacho C; van Wijnen AJ; Lian JB; Stein JL; Stein GS
    J Cell Physiol; 2014 Oct; 229(10):1466-74. PubMed ID: 24648201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cbfbeta-SMMHC impairs differentiation of common lymphoid progenitors and reveals an essential role for RUNX in early B-cell development.
    Kuo YH; Gerstein RM; Castilla LH
    Blood; 2008 Feb; 111(3):1543-51. PubMed ID: 17940206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic evidence of PEBP2beta-independent activation of Runx1 in the murine embryo.
    Yokomizo T; Yanagida M; Huang G; Osato M; Honda C; Ema M; Takahashi S; Yamamoto M; Ito Y
    Int J Hematol; 2008 Sep; 88(2):134-138. PubMed ID: 18594778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.