BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 27428712)

  • 1. Application of Chemical Doping and Architectural Design Principles To Fabricate Nanowire Co2Ni3ZnO8 Arrays for Aqueous Asymmetric Supercapacitors.
    Liu Q; Yang B; Liu J; Yuan Y; Zhang H; Liu L; Wang J; Li R
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20157-67. PubMed ID: 27428712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boosting the Electrochemical Storage Properties of Co
    Wang J; Zhang H; Duan H; Zhao H; Qi J; Ma B; Fan H
    ACS Omega; 2024 Feb; 9(6):6955-6964. PubMed ID: 38371786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical three-dimensional manganese doped cobalt phosphide nanowire decorated nanosheet cluster arrays for high-performance electrochemical pseudocapacitor electrodes.
    Zhu G; Yang L; Wang W; Ma M; Zhang J; Wen H; Zheng D; Yao Y
    Chem Commun (Camb); 2018 Aug; 54(66):9234-9237. PubMed ID: 30065974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cobalt Doping To Boost the Electrochemical Properties of Ni@Ni
    Xu S; Wang T; Ma Y; Jiang W; Wang S; Hong M; Hu N; Su Y; Zhang Y; Yang Z
    ChemSusChem; 2017 Oct; 10(20):4056-4065. PubMed ID: 28857459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical Mesoporous Zinc-Nickel-Cobalt Ternary Oxide Nanowire Arrays on Nickel Foam as High-Performance Electrodes for Supercapacitors.
    Wu C; Cai J; Zhang Q; Zhou X; Zhu Y; Shen PK; Zhang K
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26512-21. PubMed ID: 26575957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanowire-assembled Co
    Meng S; Wang Y; He J; Quan W; Gao M; Jiang D; Chen M
    Nanotechnology; 2020 May; 31(29):295403. PubMed ID: 32197261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional Cobalt Phosphide Nanowire Arrays as Negative Electrode Material for Flexible Solid-State Asymmetric Supercapacitors.
    Zheng Z; Retana M; Hu X; Luna R; Ikuhara YH; Zhou W
    ACS Appl Mater Interfaces; 2017 May; 9(20):16986-16994. PubMed ID: 28463481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant dependent self-organization of Co3O4 nanowires on Ni foam for high performance supercapacitors: from nanowire microspheres to nanowire paddy fields.
    Zhang X; Zhao Y; Xu C
    Nanoscale; 2014 Apr; 6(7):3638-46. PubMed ID: 24562602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Capacity and Energy Density of Zn-Ni-Co-P Nanowire Arrays as an Advanced Electrode for Aqueous Asymmetric Supercapacitor.
    Lei X; Ge S; Tan Y; Wang Z; Li J; Li X; Hu G; Zhu X; Huang M; Zhu Y; Xiang B
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):9158-9168. PubMed ID: 32003555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-solid-state asymmetric supercapacitors based on Fe-doped mesoporous Co
    Zhang C; Wei J; Chen L; Tang S; Deng M; Du Y
    Nanoscale; 2017 Oct; 9(40):15423-15433. PubMed ID: 28975952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid Reduced Graphene Oxide Nanosheet Supported Mn-Ni-Co Ternary Oxides for Aqueous Asymmetric Supercapacitors.
    Wu C; Cai J; Zhu Y; Zhang K
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19114-19123. PubMed ID: 28521098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Stable Gully-Network Co
    Guo C; Yin M; Wu C; Li J; Sun C; Jia C; Li T; Hou L; Wei Y
    Front Chem; 2018; 6():636. PubMed ID: 30622941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-performance asymmetric supercapacitor based on vanadyl phosphate/carbon nanocomposites and polypyrrole-derived carbon nanowires.
    Chen N; Zhou J; Zhu G; Kang Q; Ji H; Zhang Y; Wang X; Peng L; Guo X; Lu C; Chen J; Feng X; Hou W
    Nanoscale; 2018 Feb; 10(8):3709-3719. PubMed ID: 29411819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NiCo
    Zong Q; Yang H; Wang Q; Zhang Q; Xu J; Zhu Y; Wang H; Wang H; Zhang F; Shen Q
    Dalton Trans; 2018 Nov; 47(45):16320-16328. PubMed ID: 30403240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional Co₃O₄@NiMoO₄ core/shell nanowire arrays on Ni foam for electrochemical energy storage.
    Cai D; Wang D; Liu B; Wang L; Liu Y; Li H; Wang Y; Li Q; Wang T
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5050-5. PubMed ID: 24598433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zn-Co Sulfide Microflowers Anchored on Three-Dimensional Graphene: A High-Capacitance and Long-Cycle-Life Electrode for Asymmetric Supercapacitors.
    Deng Q; Tian Z; Wang X; Yang Z; Wu Y
    Chemistry; 2020 Jan; 26(3):650-658. PubMed ID: 31475418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D architecture of a graphene/CoMoO(4) composite for asymmetric supercapacitors usable at various temperatures.
    Jiang Y; Zheng X; Yan X; Li Y; Zhao X; Zhang Y
    J Colloid Interface Sci; 2017 May; 493():42-50. PubMed ID: 28088120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Approach To Fabricate PDMS Encapsulated All-Solid-State Advanced Asymmetric Supercapacitor Device with Vertically Aligned Hierarchical Zn-Fe-Co Ternary Oxide Nanowire and Nitrogen Doped Graphene Nanosheet for High Power Device Applications.
    Maitra A; Das AK; Bera R; Karan SK; Paria S; Si SK; Khatua BB
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):5947-5958. PubMed ID: 28094497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uniform P doped Co-Ni-S nanostructures for asymmetric supercapacitors with ultra-high energy densities.
    Meng Y; Sun P; He W; Teng B; Xu X
    Nanoscale; 2019 Jan; 11(2):688-697. PubMed ID: 30565623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multishelled Nickel-Cobalt Oxide Hollow Microspheres with Optimized Compositions and Shell Porosity for High-Performance Pseudocapacitors.
    Li X; Wang L; Shi J; Du N; He G
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17276-83. PubMed ID: 27327877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.