These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27428852)

  • 1. Organic phase synthesis of noble metal-zinc chalcogenide core-shell nanostructures.
    Kumar P; Diab M; Flomin K; Rukenstein P; Mokari T
    J Colloid Interface Sci; 2016 Oct; 480():159-165. PubMed ID: 27428852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new generation of alloyed/multimetal chalcogenide nanowires by chemical transformation.
    Yang Y; Wang K; Liang HW; Liu GQ; Feng M; Xu L; Liu JW; Wang JL; Yu SH
    Sci Adv; 2015 Nov; 1(10):e1500714. PubMed ID: 26601137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A core-shell templated approach to the nanocomposites of silver sulfide and noble metal nanoparticles with hollow/cage-bell structures.
    Liu H; Ye F; Cao H; Ji G; Lee JY; Yang J
    Nanoscale; 2013 Aug; 5(15):6901-7. PubMed ID: 23783584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimetallic Janus nanostructures via programmed shell growth.
    Gandra N; Portz C; Singamaneni S
    Nanoscale; 2013 Mar; 5(5):1806-9. PubMed ID: 23386141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noble metal nanoparticle@metal oxide core/yolk-shell nanostructures as catalysts: recent progress and perspective.
    Li G; Tang Z
    Nanoscale; 2014 Apr; 6(8):3995-4011. PubMed ID: 24622876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of 4H/fcc-Au@Metal Sulfide Core-Shell Nanoribbons.
    Fan Z; Zhang X; Yang J; Wu XJ; Liu Z; Huang W; Zhang H
    J Am Chem Soc; 2015 Sep; 137(34):10910-3. PubMed ID: 26288315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Au-CdSe and Ag-CdSe nanoflowers and core-shell nanocrystals via one-pot heterogeneous nucleation and growth.
    AbouZeid KM; Mohamed MB; El-Shall MS
    Small; 2011 Dec; 7(23):3299-307. PubMed ID: 21994186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of noble metal-titania core-shell nanostructures with tunable shell thickness.
    Bartosewicz B; Michalska-Domańska M; Liszewska M; Zasada D; Jankiewicz BJ
    Beilstein J Nanotechnol; 2017; 8():2083-2093. PubMed ID: 29090110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deposition of CdS, CdS/ZnSe and CdS/ZnSe/ZnS shells around CdSeTe alloyed core quantum dots: effects on optical properties.
    Adegoke O; Nyokong T; Forbes PB
    Luminescence; 2016 May; 31(3):694-703. PubMed ID: 26333473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large Scale Solid-state Synthesis of Catalytically Active Fe
    Nalluri SR; Nagarjuna R; Patra D; Ganesan R; Balaji G
    Sci Rep; 2019 Apr; 9(1):6603. PubMed ID: 31036893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of heteroepitaxy in different shapes of Au-CdSe metal-semiconductor hybrid nanostructures.
    Haldar KK; Pradhan N; Patra A
    Small; 2013 Oct; 9(20):3424-32. PubMed ID: 23666644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process.
    Wang D; Li Y
    J Am Chem Soc; 2010 May; 132(18):6280-1. PubMed ID: 20402502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical properties and exciton dynamics of alloyed core/shell/shell Cd(1-x)Zn(x)Se/ZnSe/ZnS quantum dots.
    Fitzmorris BC; Pu YC; Cooper JK; Lin YF; Hsu YJ; Li Y; Zhang JZ
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2893-900. PubMed ID: 23469824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology-Controlled Synthesis of Hybrid Nanocrystals via a Selenium-Mediated Strategy with Ligand Shielding Effect: The Case of Dual Plasmonic Au-Cu
    Zou Y; Sun C; Gong W; Yang X; Huang X; Yang T; Lu W; Jiang J
    ACS Nano; 2017 Apr; 11(4):3776-3785. PubMed ID: 28394555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrothermal Cation Exchange Enabled Gradual Evolution of Au@ZnS-AgAuS Yolk-Shell Nanocrystals and Their Visible Light Photocatalytic Applications.
    Feng J; Liu J; Cheng X; Liu J; Xu M; Zhang J
    Adv Sci (Weinh); 2018 Jan; 5(1):1700376. PubMed ID: 29375968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silica-metal core-shell nanostructures.
    Jankiewicz BJ; Jamiola D; Choma J; Jaroniec M
    Adv Colloid Interface Sci; 2012 Jan; 170(1-2):28-47. PubMed ID: 22137102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly reactive chalcogenide precursor for the synthesis of metal chalcogenide quantum dots.
    Jiang P; Zhu DL; Zhu CN; Zhang ZL; Zhang GJ; Pang DW
    Nanoscale; 2015 Dec; 7(45):19310-6. PubMed ID: 26531253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aqueous Topological Synthesis of Au@semiconductor Core-Shell Nanocrystals with Morphology and Composition Engineering.
    Li S; Xue J; Ji L; Li X; Zhang J
    Inorg Chem; 2024 Jun; 63(22):10358-10365. PubMed ID: 38767279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.
    Kuai L; Geng B; Wang S; Sang Y
    Chemistry; 2012 Jul; 18(30):9423-9. PubMed ID: 22714952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphology-Controlled Synthesis of Au/Cu₂FeSnS₄ Core-Shell Nanostructures for Plasmon-Enhanced Photocatalytic Hydrogen Generation.
    Ha E; Lee LY; Man HW; Tsang SC; Wong KY
    ACS Appl Mater Interfaces; 2015 May; 7(17):9072-7. PubMed ID: 25867143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.