These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27428942)

  • 1. In Situ Investigation of a Self-Accelerated Cocrystal Formation by Grinding Pyrazinamide with Oxalic Acid.
    Kulla H; Greiser S; Benemann S; Rademann K; Emmerling F
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27428942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dry Mechanochemical Synthesis of Caffeine/Oxalic Acid Cocrystals and Their Evaluation by Powder X-Ray Diffraction and Chemometrics.
    Otsuka Y; Ito A; Takeuchi M; Tanaka H
    J Pharm Sci; 2017 Dec; 106(12):3458-3464. PubMed ID: 28797789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cocrystal design gone awry? A new dimorphic hydrate of oxalic acid.
    Wenger M; Bernstein J
    Mol Pharm; 2007; 4(3):355-9. PubMed ID: 17500563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmaceutical Cocrystal Formation of Pyrazinamide with 3-Hydroxybenzoic Acid: A Terahertz and Raman Vibrational Spectroscopies Study.
    Wang Q; Xue J; Hong Z; Du Y
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30704029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of ofloxacin-oxalic acid complex by PXRD, NMR, and THz spectroscopy.
    Limwikrant W; Higashi K; Yamamoto K; Moribe K
    Int J Pharm; 2009 Dec; 382(1-2):50-5. PubMed ID: 19666098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding.
    Karki S; Friscić T; Jones W; Motherwell WD
    Mol Pharm; 2007; 4(3):347-54. PubMed ID: 17497885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cocrystal dissociation in the presence of water: a general approach for identifying stable cocrystal forms.
    Eddleston MD; Madusanka N; Jones W
    J Pharm Sci; 2014 Sep; 103(9):2865-2870. PubMed ID: 24824298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of waters of crystallization on terahertz spectra: anhydrous oxalic acid and its dihydrate.
    King MD; Korter TM
    J Phys Chem A; 2010 Jul; 114(26):7127-38. PubMed ID: 20536195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal engineering of stable temozolomide cocrystals.
    Babu NJ; Sanphui P; Nangia A
    Chem Asian J; 2012 Oct; 7(10):2274-85. PubMed ID: 22615256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of cocrystallization techniques on compressional properties of caffeine/oxalic acid 2:1 cocrystal.
    Aher S; Dhumal R; Mahadik K; Ketolainen J; Paradkar A
    Pharm Dev Technol; 2013 Feb; 18(1):55-60. PubMed ID: 21981663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput cocrystal slurry screening by use of in situ Raman microscopy and multi-well plate.
    Kojima T; Tsutsumi S; Yamamoto K; Ikeda Y; Moriwaki T
    Int J Pharm; 2010 Oct; 399(1-2):52-9. PubMed ID: 20696223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid state characterization of azelnidipine-oxalic acid co-crystal and co-amorphous complexes: The effect of different azelnidipine polymorphs.
    Pan Y; Pang W; Lv J; Wang J; Yang C; Guo W
    J Pharm Biomed Anal; 2017 May; 138():302-315. PubMed ID: 28237872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explaining dissolution properties of rivaroxaban cocrystals.
    Hriňová E; Skořepová E; Čerňa I; Královičová J; Kozlík P; Křížek T; Roušarová J; Ryšánek P; Šíma M; Slanař O; Šoóš M
    Int J Pharm; 2022 Jun; 622():121854. PubMed ID: 35623488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of the pyrazinamide-p-aminobenzoic acid (1/1) cocrystal and the transamidation reaction product 4-(pyrazine-2-carboxamido)benzoic acid in the molten state.
    Thorat SH; Sahu SK; Gonnade RG
    Acta Crystallogr C Struct Chem; 2015 Nov; 71(Pt 11):1010-6. PubMed ID: 26524176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the relative stability of pharmaceutical cocrystals consisting of paracetamol and dicarboxylic acids.
    Suzuki N; Kawahata M; Yamaguchi K; Suzuki T; Tomono K; Fukami T
    Drug Dev Ind Pharm; 2018 Apr; 44(4):582-589. PubMed ID: 29132223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preferential Enrichment of DL-Leucine Using Cocrystal Formation With Oxalic Acid Under Nonequilibrium Crystallization Conditions.
    Manoj K; Takahashi H; Morita Y; Gonnade RG; Iwama S; Tsue H; Tamura R
    Chirality; 2015 Jul; 27(7):405-10. PubMed ID: 25683517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic Insight into Caffeine-Oxalic Cocrystal Dissociation in Formulations: Role of Excipients.
    Duggirala NK; Vyas A; Krzyzaniak JF; Arora KK; Suryanarayanan R
    Mol Pharm; 2017 Nov; 14(11):3879-3887. PubMed ID: 28990387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature dependent solid-state proton migration in dimethylurea-oxalic acid complexes.
    Jones AO; Lemée-Cailleau MH; Martins DM; McIntyre GJ; Oswald ID; Pulham CR; Spanswick CK; Thomas LH; Wilson CC
    Phys Chem Chem Phys; 2012 Oct; 14(38):13273-83. PubMed ID: 22918382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation, structural analysis, and properties of tenoxicam cocrystals.
    Patel JR; Carlton RA; Needham TE; Chichester CO; Vogt FG
    Int J Pharm; 2012 Oct; 436(1-2):685-706. PubMed ID: 22841852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical stability enhancement of theophylline via cocrystallization.
    Trask AV; Motherwell WD; Jones W
    Int J Pharm; 2006 Aug; 320(1-2):114-23. PubMed ID: 16769188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.