These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 27429093)

  • 1. Pitch-class distribution modulates the statistical learning of atonal chord sequences.
    Daikoku T; Yatomi Y; Yumoto M
    Brain Cogn; 2016 Oct; 108():1-10. PubMed ID: 27429093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical learning of music- and language-like sequences and tolerance for spectral shifts.
    Daikoku T; Yatomi Y; Yumoto M
    Neurobiol Learn Mem; 2015 Feb; 118():8-19. PubMed ID: 25451311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implicit and explicit statistical learning of tone sequences across spectral shifts.
    Daikoku T; Yatomi Y; Yumoto M
    Neuropsychologia; 2014 Oct; 63():194-204. PubMed ID: 25192632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical learning of an auditory sequence and reorganization of acquired knowledge: A time course of word segmentation and ordering.
    Daikoku T; Yatomi Y; Yumoto M
    Neuropsychologia; 2017 Jan; 95():1-10. PubMed ID: 27939187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural discrimination of nonprototypical chords in music experts and laymen: an MEG study.
    Brattico E; Pallesen KJ; Varyagina O; Bailey C; Anourova I; Järvenpää M; Eerola T; Tervaniemi M
    J Cogn Neurosci; 2009 Nov; 21(11):2230-44. PubMed ID: 18855547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perceptual uncertainty modulates auditory statistical learning: A magnetoencephalography study.
    Okano T; Daikoku T; Ugawa Y; Kanai K; Yumoto M
    Int J Psychophysiol; 2021 Oct; 168():65-71. PubMed ID: 34418465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of conditional probability of chord progression on brain response: an MEG study.
    Kim SG; Kim JS; Chung CK
    PLoS One; 2011 Feb; 6(2):e17337. PubMed ID: 21364895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Musical training shapes neural responses to melodic and prosodic expectation.
    Zioga I; Di Bernardi Luft C; Bhattacharya J
    Brain Res; 2016 Nov; 1650():267-282. PubMed ID: 27622645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing of musical syntax tonic versus subdominant: an event-related potential study.
    Poulin-Charronnat B; Bigand E; Koelsch S
    J Cogn Neurosci; 2006 Sep; 18(9):1545-54. PubMed ID: 16989554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Untangling syntactic and sensory processing: an ERP study of music perception.
    Koelsch S; Jentschke S; Sammler D; Mietchen D
    Psychophysiology; 2007 May; 44(3):476-90. PubMed ID: 17433099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuromagnetic responses to chords are modified by preceding musical scale.
    Otsuka A; Kuriki S; Murata N; Hasegawa T
    Neurosci Res; 2008 Jan; 60(1):50-5. PubMed ID: 17981351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Event-related brain potentials suggest a late interaction of pitch and time in music perception.
    Zhang J; Che X; Yang Y
    Neuropsychologia; 2019 Sep; 132():107118. PubMed ID: 31176722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amygdala activity can be modulated by unexpected chord functions during music listening.
    Koelsch S; Fritz T; Schlaug G
    Neuroreport; 2008 Dec; 19(18):1815-9. PubMed ID: 19050462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognizing the component tones of a major chord.
    Hubbard TL; Datteri DL
    Am J Psychol; 2001; 114(4):569-89. PubMed ID: 11789341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Representation of harmony rules in the human brain: further evidence from event-related potentials.
    Leino S; Brattico E; Tervaniemi M; Vuust P
    Brain Res; 2007 Apr; 1142():169-77. PubMed ID: 17300763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pitch motion with random chord sequences.
    Allik J; Dzhafarov EN; Houtsma AJ; Ross J; Versfeld NJ
    Percept Psychophys; 1989 Dec; 46(6):513-27. PubMed ID: 2587180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Naïve Learners Show Cross-Domain Transfer after Distributional Learning: The Case of Lexical and Musical Pitch.
    Ong JH; Burnham D; Stevens CJ; Escudero P
    Front Psychol; 2016; 7():1189. PubMed ID: 27551272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N1 component reflects difference of terminal chords in three-chord sequences.
    Dekio-Hotta S; Kojima T; Karino S; Yamasoba T; Dekio I; Ito YM; Satake H; Kaga K
    Neuroreport; 2009 Feb; 20(3):251-6. PubMed ID: 19188861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experience Drives Synchronization: The phase and Amplitude Dynamics of Neural Oscillations to Musical Chords Are Differentially Modulated by Musical Expertise.
    Pallesen KJ; Bailey CJ; Brattico E; Gjedde A; Palva JM; Palva S
    PLoS One; 2015; 10(8):e0134211. PubMed ID: 26291324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning novel musical pitch via distributional learning.
    Ong JH; Burnham D; Stevens CJ
    J Exp Psychol Learn Mem Cogn; 2017 Jan; 43(1):150-157. PubMed ID: 27149394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.