These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 2742988)

  • 1. The electrostatic potential of B-DNA.
    Jayaram B; Sharp KA; Honig B
    Biopolymers; 1989 May; 28(5):975-93. PubMed ID: 2742988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo and Poisson-Boltzmann calculations of the fraction of counterions bound to DNA.
    Lamm G; Wong L; Pack GR
    Biopolymers; 1994 Feb; 34(2):227-37. PubMed ID: 8142591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On removal of charge singularity in Poisson-Boltzmann equation.
    Cai Q; Wang J; Zhao HK; Luo R
    J Chem Phys; 2009 Apr; 130(14):145101. PubMed ID: 19368474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydration effects on the electrostatic potential around tuftsin.
    Valdeavella CV; Blatt HD; Yang L; Pettitt BM
    Biopolymers; 1999 Aug; 50(2):133-43. PubMed ID: 10380337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid boundary element and finite difference method for solving the nonlinear Poisson-Boltzmann equation.
    Boschitsch AH; Fenley MO
    J Comput Chem; 2004 May; 25(7):935-55. PubMed ID: 15027106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The electrostatic contribution to DNA base-stacking interactions.
    Friedman RA; Honig B
    Biopolymers; 1992 Feb; 32(2):145-59. PubMed ID: 1637989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA structure: what's in charge?
    McConnell KJ; Beveridge DL
    J Mol Biol; 2000 Dec; 304(5):803-20. PubMed ID: 11124028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The electrostatic contribution to the B to Z transition of DNA.
    Misra VK; Honig B
    Biochemistry; 1996 Jan; 35(4):1115-24. PubMed ID: 8573566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: effects of ionic strength and amino-acid modification.
    Klapper I; Hagstrom R; Fine R; Sharp K; Honig B
    Proteins; 1986 Sep; 1(1):47-59. PubMed ID: 3449851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brownian dynamics simulations of ion atmospheres around polyalanine and B-DNA: effects of biomolecular dielectric.
    Cerutti DS; Wong CF; McCammon JA
    Biopolymers; 2003 Oct; 70(3):391-402. PubMed ID: 14579311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetics of charge-charge interactions in proteins.
    Gilson MK; Honig BH
    Proteins; 1988; 3(1):32-52. PubMed ID: 3287370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly accurate biomolecular electrostatics in continuum dielectric environments.
    Zhou YC; Feig M; Wei GW
    J Comput Chem; 2008 Jan; 29(1):87-97. PubMed ID: 17508411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of a low-dielectric interior on DNA electrostatic response to twisting and bending.
    Cherstvy AG
    J Phys Chem B; 2007 Nov; 111(44):12933-7. PubMed ID: 17941661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic potential of B-DNA: effect of interionic correlations.
    Gavryushov S; Zielenkiewicz P
    Biophys J; 1998 Dec; 75(6):2732-42. PubMed ID: 9826596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of a variable dielectric coefficient and finite ion size on Poisson-Boltzmann calculations of DNA-electrolyte systems.
    Pack GR; Garrett GA; Wong L; Lamm G
    Biophys J; 1993 Oct; 65(4):1363-70. PubMed ID: 8274630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salt effects on ligand-DNA binding. Minor groove binding antibiotics.
    Misra VK; Sharp KA; Friedman RA; Honig B
    J Mol Biol; 1994 Apr; 238(2):245-63. PubMed ID: 7512653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do electrostatic interactions destabilize protein-nucleic acid binding?
    Qin S; Zhou HX
    Biopolymers; 2007 Jun; 86(2):112-8. PubMed ID: 17326079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of long-range electrostatic interactions in DNA.
    Vologodskii A; Cozzarelli N
    Biopolymers; 1995 Mar; 35(3):289-96. PubMed ID: 7703374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How well does charge reparametrisation account for solvent screening in molecular mechanics calculations? The example of myosin.
    Schwarzl SM; Huang D; Smith JC; Fischer S
    In Silico Biol; 2003; 3(1-2):187-96. PubMed ID: 12762854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonuniform charge scaling (NUCS): a practical approximation of solvent electrostatic screening in proteins.
    Schwarzl SM; Huang D; Smith JC; Fischer S
    J Comput Chem; 2005 Oct; 26(13):1359-71. PubMed ID: 16021598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.