BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 27429982)

  • 1. CX3CL1/CX3CR1 in Alzheimer's Disease: A Target for Neuroprotection.
    Chen P; Zhao W; Guo Y; Xu J; Yin M
    Biomed Res Int; 2016; 2016():8090918. PubMed ID: 27429982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CX3CL1/CX3CR1 signaling targets for the treatment of neurodegenerative diseases.
    Subbarayan MS; Joly-Amado A; Bickford PC; Nash KR
    Pharmacol Ther; 2022 Mar; 231():107989. PubMed ID: 34492237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microglial Cx3cr1 knockout reduces prion disease incubation time in mice.
    Grizenkova J; Akhtar S; Brandner S; Collinge J; Lloyd SE
    BMC Neurosci; 2014 Mar; 15():44. PubMed ID: 24655482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microglial phagocytosis and activation underlying photoreceptor degeneration is regulated by CX3CL1-CX3CR1 signaling in a mouse model of retinitis pigmentosa.
    Zabel MK; Zhao L; Zhang Y; Gonzalez SR; Ma W; Wang X; Fariss RN; Wong WT
    Glia; 2016 Sep; 64(9):1479-91. PubMed ID: 27314452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractalkine/CX3CR1 is involved in the cross-talk between neuron and glia in neurological diseases.
    Luo P; Chu SF; Zhang Z; Xia CY; Chen NH
    Brain Res Bull; 2019 Mar; 146():12-21. PubMed ID: 30496784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Impact of the CX3CL1/CX3CR1 Axis in Neurological Disorders.
    Pawelec P; Ziemka-Nalecz M; Sypecka J; Zalewska T
    Cells; 2020 Oct; 9(10):. PubMed ID: 33065974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractalkine in the nervous system: neuroprotective or neurotoxic molecule?
    Lauro C; Catalano M; Trettel F; Limatola C
    Ann N Y Acad Sci; 2015 Sep; 1351():141-8. PubMed ID: 26084002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer's disease mouse models.
    Lee S; Varvel NH; Konerth ME; Xu G; Cardona AE; Ransohoff RM; Lamb BT
    Am J Pathol; 2010 Nov; 177(5):2549-62. PubMed ID: 20864679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cathepsin S contributes to microglia-mediated olfactory dysfunction through the regulation of Cx3cl1-Cx3cr1 axis in a Niemann-Pick disease type C1 model.
    Seo Y; Kim HS; Kang I; Choi SW; Shin TH; Shin JH; Lee BC; Lee JY; Kim JJ; Kook MG; Kang KS
    Glia; 2016 Dec; 64(12):2291-2305. PubMed ID: 27687148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absence of CX3CR1 impairs the internalization of Tau by microglia.
    Bolós M; Llorens-Martín M; Perea JR; Jurado-Arjona J; Rábano A; Hernández F; Avila J
    Mol Neurodegener; 2017 Aug; 12(1):59. PubMed ID: 28810892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microglia and Aging: The Role of the TREM2-DAP12 and CX3CL1-CX3CR1 Axes.
    Mecca C; Giambanco I; Donato R; Arcuri C
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29361745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the Role of CX3CL1 (Fractalkine) and Its Receptor CX3CR1 in Traumatic Brain and Spinal Cord Injury: Insight into Recent Advances in Actions of Neurochemokine Agents.
    Poniatowski ŁA; Wojdasiewicz P; Krawczyk M; Szukiewicz D; Gasik R; Kubaszewski Ł; Kurkowska-Jastrzębska I
    Mol Neurobiol; 2017 Apr; 54(3):2167-2188. PubMed ID: 26927660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CX3CL1/CX3CR1 axis attenuates early brain injury via promoting the delivery of exosomal microRNA-124 from neuron to microglia after subarachnoid hemorrhage.
    Chen X; Jiang M; Li H; Wang Y; Shen H; Li X; Zhang Y; Wu J; Yu Z; Chen G
    J Neuroinflammation; 2020 Jul; 17(1):209. PubMed ID: 32664984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HIV-1 Tat disrupts CX3CL1-CX3CR1 axis in microglia via the NF-κBYY1 pathway.
    Duan M; Yao H; Cai Y; Liao K; Seth P; Buch S
    Curr HIV Res; 2014; 12(3):189-200. PubMed ID: 24862326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of fractalkine/CX3CL1 and its receptor in the pathogenesis of inflammatory and malignant diseases with emphasis on B cell malignancies.
    Ferretti E; Pistoia V; Corcione A
    Mediators Inflamm; 2014; 2014():480941. PubMed ID: 24799766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for a protective role of the CX3CL1/CX3CR1 axis in a model of amyotrophic lateral sclerosis.
    Liu C; Hong K; Chen H; Niu Y; Duan W; Liu Y; Ji Y; Deng B; Li Y; Li Z; Wen D; Li C
    Biol Chem; 2019 Apr; 400(5):651-661. PubMed ID: 30352020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression changes of CX3CL1 and CX3CR1 proteins in the hippocampal CA1 field of the gerbil following transient global cerebral ischemia.
    Ahn JH; Kim DW; Park JH; Lee TK; Lee HA; Won MH; Lee CH
    Int J Mol Med; 2019 Sep; 44(3):939-948. PubMed ID: 31524247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of the activation and recruitment of microglia-like cells protects against neomycin-induced ototoxicity.
    Sun S; Yu H; Yu H; Honglin M; Ni W; Zhang Y; Guo L; He Y; Xue Z; Ni Y; Li J; Feng Y; Chen Y; Shao R; Chai R; Li H
    Mol Neurobiol; 2015 Feb; 51(1):252-67. PubMed ID: 24781382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, during acute and chronic inflammation in the rodent CNS.
    Hughes PM; Botham MS; Frentzel S; Mir A; Perry VH
    Glia; 2002 Mar; 37(4):314-27. PubMed ID: 11870871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Cytokine CX3CL1 and ADAMs/MMPs in Concerted Cross-Talk Influencing Neurodegenerative Diseases.
    Iemmolo M; Ghersi G; Bivona G
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.