BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 27430156)

  • 21. Wilms tumor and the WT1 gene.
    Lee SB; Haber DA
    Exp Cell Res; 2001 Mar; 264(1):74-99. PubMed ID: 11237525
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Upregulated WTAP expression in colorectal cancer correlates with tumor site and differentiation.
    Dong XF; Wang Y; Tang CH; Huang BF; Du Z; Wang Q; Shao JK; Lu HJ; Wang CQ
    PLoS One; 2022; 17(2):e0263749. PubMed ID: 35143566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of insulin-like growth factor I receptor promoter activity by wild-type and mutant versions of the WT1 tumor suppressor.
    Tajinda K; Carroll J; Roberts CT
    Endocrinology; 1999 Oct; 140(10):4713-24. PubMed ID: 10499530
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of WTAP-related genes by weighted gene co-expression network analysis in ovarian cancer.
    Wang J; Xu J; Li K; Huang Y; Dai Y; Xu C; Kang Y
    J Ovarian Res; 2020 Sep; 13(1):119. PubMed ID: 32998774
    [TBL] [Abstract][Full Text] [Related]  

  • 25. WT1, the Wilms' tumor suppressor gene product, represses transcription through an interactive nuclear protein.
    Wang ZY; Qiu QQ; Gurrieri M; Huang J; Deuel TF
    Oncogene; 1995 Mar; 10(6):1243-7. PubMed ID: 7700651
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrative genomic analyses on interferon-lambdas and their roles in cancer prediction.
    Yang L; Wei J; He S
    Int J Mol Med; 2010 Feb; 25(2):299-304. PubMed ID: 20043142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relationship between the genetic expression of WTAP and bladder cancer and patient prognosis.
    Chen L; Wang X
    Oncol Lett; 2018 Dec; 16(6):6966-6970. PubMed ID: 30546429
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An interaction proteomics survey of transcription factor binding at recurrent TERT promoter mutations.
    Makowski MM; Willems E; Fang J; Choi J; Zhang T; Jansen PW; Brown KM; Vermeulen M
    Proteomics; 2016 Feb; 16(3):417-26. PubMed ID: 26553150
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel polymorphisms in UTR and coding region of inducible heat shock protein 70.1 gene in tropically adapted Indian zebu cattle (Bos indicus) and riverine buffalo (Bubalus bubalis).
    Sodhi M; Mukesh M; Kishore A; Mishra BP; Kataria RS; Joshi BK
    Gene; 2013 Sep; 527(2):606-15. PubMed ID: 23792016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. BR22, a novel protein, interacts with thyroid transcription factor-1 and activates the human surfactant protein B promoter.
    Yang YS; Yang MC; Wang B; Weissler JC
    Am J Respir Cell Mol Biol; 2001 Jan; 24(1):30-37. PubMed ID: 11152647
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activation of the WT1 tumor suppressor gene promoter by Pea3.
    Discenza MT; Vaz D; Hassell JA; Pelletier J
    FEBS Lett; 2004 Feb; 560(1-3):183-91. PubMed ID: 14988020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Despite WT1 binding sites in the promoter region of human and mouse nucleoporin glycoprotein 210, WT1 does not influence expression of GP210.
    Olsson M; English MA; Mason J; Licht JD; Ekblom P
    J Negat Results Biomed; 2004 Dec; 3():7. PubMed ID: 15613247
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Notch ligand, JAG1, is evolutionarily conserved target of canonical WNT signaling pathway in progenitor cells.
    Katoh M; Katoh M
    Int J Mol Med; 2006 Apr; 17(4):681-5. PubMed ID: 16525728
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional activity of testis-determining factor SRY is modulated by the Wilms' tumor 1 gene product, WT1.
    Matsuzawa-Watanabe Y; Inoue J; Semba K
    Oncogene; 2003 Sep; 22(39):7900-4. PubMed ID: 12970737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiological functions of Wilms' tumor 1-associating protein and its role in tumourigenesis.
    Xie W; Wei L; Guo J; Guo H; Song X; Sheng X
    J Cell Biochem; 2019 Jul; 120(7):10884-10892. PubMed ID: 30756410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinical application of genomic profiling to find druggable targets for adolescent and young adult (AYA) cancer patients with metastasis.
    Cha S; Lee J; Shin JY; Kim JY; Sim SH; Keam B; Kim TM; Kim DW; Heo DS; Lee SH; Kim JI
    BMC Cancer; 2016 Feb; 16():170. PubMed ID: 26925973
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of vertebrate genes related to prion and Shadoo proteins--clues from comparative genomic analysis.
    Premzl M; Gready JE; Jermiin LS; Simonic T; Marshall Graves JA
    Mol Biol Evol; 2004 Dec; 21(12):2210-31. PubMed ID: 15342797
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulatory back-up circuit of medaka Wt1 co-orthologs ensures PGC maintenance.
    Klüver N; Herpin A; Braasch I; Driessle J; Schartl M
    Dev Biol; 2009 Jan; 325(1):179-88. PubMed ID: 18992736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrative genomic analyses on HES/HEY family: Notch-independent HES1, HES3 transcription in undifferentiated ES cells, and Notch-dependent HES1, HES5, HEY1, HEY2, HEYL transcription in fetal tissues, adult tissues, or cancer.
    Katoh M; Katoh M
    Int J Oncol; 2007 Aug; 31(2):461-6. PubMed ID: 17611704
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Upregulation of c-MYC in WT1-mutant tumors: assessment of WT1 putative transcriptional targets using cDNA microarray expression profiling of genetically defined Wilms' tumors.
    Udtha M; Lee SJ; Alam R; Coombes K; Huff V
    Oncogene; 2003 Jun; 22(24):3821-6. PubMed ID: 12802290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.