These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 27430211)

  • 1. Characterization of sulfur oxidizing bacteria related to biogenic sulfuric acid corrosion in sludge digesters.
    Huber B; Herzog B; Drewes JE; Koch K; Müller E
    BMC Microbiol; 2016 Jul; 16(1):153. PubMed ID: 27430211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revealing biogenic sulfuric acid corrosion in sludge digesters: detection of sulfur-oxidizing bacteria within full-scale digesters.
    Huber B; Drewes JE; Lin KC; König R; Müller E
    Water Sci Technol; 2014; 70(8):1405-11. PubMed ID: 25353947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems.
    Okabe S; Odagiri M; Ito T; Satoh H
    Appl Environ Microbiol; 2007 Feb; 73(3):971-80. PubMed ID: 17142362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system.
    Satoh H; Odagiri M; Ito T; Okabe S
    Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers.
    Jensen HS; Lens PN; Nielsen JL; Bester K; Nielsen AH; Hvitved-Jacobsen T; Vollertsen J
    J Hazard Mater; 2011 May; 189(3):685-91. PubMed ID: 21440988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diverse bacterial groups are associated with corrosive lesions at a Granite Mountain Record Vault (GMRV).
    Kan J; Chellamuthu P; Obraztsova A; Moore JE; Nealson KH
    J Appl Microbiol; 2011 Aug; 111(2):329-37. PubMed ID: 21599813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Succession of internal sulfur cycles and sulfur-oxidizing bacterial communities in microaerophilic wastewater biofilms.
    Okabe S; Ito T; Sugita K; Satoh H
    Appl Environ Microbiol; 2005 May; 71(5):2520-9. PubMed ID: 15870342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corrosion by bacteria of concrete in sewerage systems and inhibitory effects of formates on their growth.
    Yamanaka T; Aso I; Togashi S; Tanigawa M; Shoji K; Watanabe T; Watanabe N; Maki K; Suzuki H
    Water Res; 2002 May; 36(10):2636-42. PubMed ID: 12153031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of sulphur-oxidizing Thiomonas sp. and its potential application in biological deodorization.
    Chen XG; Geng AL; Yan R; Gould WD; Ng YL; Liang DT
    Lett Appl Microbiol; 2004; 39(6):495-503. PubMed ID: 15548301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of sulfide-oxidizing microbial mats developed inside a full-scale anaerobic digester employing biological desulfurization.
    Kobayashi T; Li YY; Kubota K; Harada H; Maeda T; Yu HQ
    Appl Microbiol Biotechnol; 2012 Jan; 93(2):847-57. PubMed ID: 21735263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel granular sludge-based and highly corrosion-resistant bio-concrete in sewers.
    Song Y; Chetty K; Garbe U; Wei J; Bu H; O'moore L; Li X; Yuan Z; McCarthy T; Jiang G
    Sci Total Environ; 2021 Oct; 791():148270. PubMed ID: 34119799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Granulation of sulfur-oxidizing bacteria for autotrophic denitrification.
    Yang W; Lu H; Khanal SK; Zhao Q; Meng L; Chen GH
    Water Res; 2016 Nov; 104():507-519. PubMed ID: 27589211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of iron-oxidizing bacteria from corroded concretes of sewage treatment plants.
    Maeda T; Negishi A; Komoto H; Oshima Y; Kamimura K; Sugio T
    J Biosci Bioeng; 1999; 88(3):300-5. PubMed ID: 16232615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioleaching of chromium from tannery sludge by indigenous Acidithiobacillus thiooxidans.
    Wang YS; Pan ZY; Lang JM; Xu JM; Zheng YG
    J Hazard Mater; 2007 Aug; 147(1-2):319-24. PubMed ID: 17275185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive changes of chemolithoautotrophic acidophilic sulfur-oxidizing bacteria during growth in sewage sludge.
    Matlakowska R; Sklodowska A
    Can J Microbiol; 2006 Dec; 52(12):1189-98. PubMed ID: 17473888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enrichment, isolation and identification of sulfur-oxidizing bacteria from sulfide removing bioreactor.
    Luo J; Tian G; Lin W
    J Environ Sci (China); 2013 Jul; 25(7):1393-9. PubMed ID: 24218852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of phosphorus from municipal wastewater treatment sludge through bioleaching using Acidithiobacillus thiooxidans.
    Lee Y; Sethurajan M; van de Vossenberg J; Meers E; van Hullebusch ED
    J Environ Manage; 2020 Sep; 270():110818. PubMed ID: 32507739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initial stage of the biofilm formation on the NiTi and Ti6Al4V surface by the sulphur-oxidizing bacteria and sulphate-reducing bacteria.
    Cwalina B; Dec W; Michalska JK; Jaworska-Kik M; Student S
    J Mater Sci Mater Med; 2017 Sep; 28(11):173. PubMed ID: 28956213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the microbial communities on corroded concrete sewer pipes--a case study.
    Vincke E; Boon N; Verstraete W
    Appl Microbiol Biotechnol; 2001 Dec; 57(5-6):776-85. PubMed ID: 11778893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Corrosion of pipe steel samples and conjugated conversion of sulfur compounds by thiobacteria Halothiobacillus neapolitanus DSM 15147].
    Vatsurina AV; Esikova TZ; Kholodenko VP; Vaĭnshteĭn MB; Dubkova VI
    Prikl Biokhim Mikrobiol; 2005; 41(5):564-7. PubMed ID: 16240657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.