BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27430598)

  • 1. Key role of cysteine residues and sulfenic acids in thermal- and H2O2-mediated modification of β-lactoglobulin.
    Krämer AC; Thulstrup PW; Lund MN; Davies MJ
    Free Radic Biol Med; 2016 Aug; 97():544-555. PubMed ID: 27430598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Oxidation and Protein Unfolding on Cross-Linking of β-Lactoglobulin and α-Lactalbumin.
    Krämer AC; Torreggiani A; Davies MJ
    J Agric Food Chem; 2017 Nov; 65(47):10258-10269. PubMed ID: 29096436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Methylglyoxal-Induced Glycation on the Composition and Structure of β-Lactoglobulin and α-Lactalbumin.
    Krämer AC; Davies MJ
    J Agric Food Chem; 2019 Jan; 67(2):699-710. PubMed ID: 30577692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of active center cysteine of bovine 1-Cys peroxiredoxin to the cysteine sulfenic acid form by peroxide and peroxynitrite.
    Peshenko IV; Shichi H
    Free Radic Biol Med; 2001 Aug; 31(3):292-303. PubMed ID: 11461766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The thiol of human serum albumin: Acidity, microenvironment and mechanistic insights on its oxidation to sulfenic acid.
    Bonanata J; Turell L; Antmann L; Ferrer-Sueta G; Botasini S; Méndez E; Alvarez B; Coitiño EL
    Free Radic Biol Med; 2017 Jul; 108():952-962. PubMed ID: 28438657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein cysteine oxidation in redox signaling: Caveats on sulfenic acid detection and quantification.
    Forman HJ; Davies MJ; Krämer AC; Miotto G; Zaccarin M; Zhang H; Ursini F
    Arch Biochem Biophys; 2017 Mar; 617():26-37. PubMed ID: 27693037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The myeloperoxidase-derived oxidant hypothiocyanous acid inhibits protein tyrosine phosphatases via oxidation of key cysteine residues.
    Cook NL; Moeke CH; Fantoni LI; Pattison DI; Davies MJ
    Free Radic Biol Med; 2016 Jan; 90():195-205. PubMed ID: 26616646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A genetically encoded probe for cysteine sulfenic acid protein modification in vivo.
    Takanishi CL; Ma LH; Wood MJ
    Biochemistry; 2007 Dec; 46(50):14725-32. PubMed ID: 18020457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation.
    Denu JM; Tanner KG
    Biochemistry; 1998 Apr; 37(16):5633-42. PubMed ID: 9548949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning Cysteine Reactivity and Sulfenic Acid Stability by Protein Microenvironment in Glyceraldehyde-3-Phosphate Dehydrogenases of Arabidopsis thaliana.
    Zaffagnini M; Fermani S; Calvaresi M; Orrù R; Iommarini L; Sparla F; Falini G; Bottoni A; Trost P
    Antioxid Redox Signal; 2016 Mar; 24(9):502-17. PubMed ID: 26650776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complexation of bovine β-lactoglobulin with malvidin-3-O-glucoside and its effect on the stability of grape skin anthocyanin extracts.
    He Z; Zhu H; Xu M; Zeng M; Qin F; Chen J
    Food Chem; 2016 Oct; 209():234-40. PubMed ID: 27173557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids.
    Reisz JA; Bechtold E; King SB; Poole LB; Furdui CM
    FEBS J; 2013 Dec; 280(23):6150-61. PubMed ID: 24103186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal modifications of structure and co-denaturation of alpha-lactalbumin and beta-lactoglobulin induce changes of solubility and susceptibility to proteases.
    Bertrand-Harb C; Baday A; Dalgalarrondo M; Chobert JM; Haertlé T
    Nahrung; 2002 Aug; 46(4):283-9. PubMed ID: 12224426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of free Cys121 in stabilization of bovine beta-lactoglobulin B.
    Burova TV; Choiset Y; Tran V; Haertlé T
    Protein Eng; 1998 Nov; 11(11):1065-73. PubMed ID: 9876928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of biological oxidants on the catalytic activity and structure of group VIA phospholipase A2.
    Song H; Bao S; Ramanadham S; Turk J
    Biochemistry; 2006 May; 45(20):6392-406. PubMed ID: 16700550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel LC-MS application to investigate oxidation of peptides isolated from β-lactoglobulin.
    Koivumäki T; Gürbüz G; Poutanen M; Heinonen M
    J Agric Food Chem; 2012 Jul; 60(27):6799-805. PubMed ID: 22591547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Widespread sulfenic acid formation in tissues in response to hydrogen peroxide.
    Saurin AT; Neubert H; Brennan JP; Eaton P
    Proc Natl Acad Sci U S A; 2004 Dec; 101(52):17982-7. PubMed ID: 15604151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of Whey Proteins during Thermal Treatment Characterized by a Site-Specific LC-MS/MS-Based Proteomic Approach.
    Li C; Nielsen SB; Engholm-Keller K; Lund MN
    J Agric Food Chem; 2022 Apr; 70(14):4391-4406. PubMed ID: 35380828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profiling protein thiol oxidation in tumor cells using sulfenic acid-specific antibodies.
    Seo YH; Carroll KS
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16163-8. PubMed ID: 19805274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using DCP-Rho1 as a fluorescent probe to visualize sulfenic acid-containing proteins in living plant cells.
    Lara-Rojas F; Sarmiento-López LG; Pascual-Morales E; Ryken SE; Bezanilla M; Cardenas L
    Methods Enzymol; 2023; 683():291-308. PubMed ID: 37087193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.