These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics. Gold ND; Gowen CM; Lussier FX; Cautha SC; Mahadevan R; Martin VJ Microb Cell Fact; 2015 May; 14():73. PubMed ID: 26016674 [TBL] [Abstract][Full Text] [Related]
5. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints. Yen JY; Nazem-Bokaee H; Freedman BG; Athamneh AI; Senger RS Biotechnol J; 2013 May; 8(5):581-94. PubMed ID: 23460591 [TBL] [Abstract][Full Text] [Related]
6. Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae. Quarterman J; Skerker JM; Feng X; Liu IY; Zhao H; Arkin AP; Jin YS J Biotechnol; 2016 Jul; 229():13-21. PubMed ID: 27140870 [TBL] [Abstract][Full Text] [Related]
7. Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering. Cotten C; Reed JL Biotechnol J; 2013 May; 8(5):595-604. PubMed ID: 23703951 [TBL] [Abstract][Full Text] [Related]
8. A systems-level approach for metabolic engineering of yeast cell factories. Kim IK; Roldão A; Siewers V; Nielsen J FEMS Yeast Res; 2012 Mar; 12(2):228-48. PubMed ID: 22188344 [TBL] [Abstract][Full Text] [Related]
9. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206 [TBL] [Abstract][Full Text] [Related]
10. Modular Pathway Rewiring of Yeast for Amino Acid Production. Liu Q; Yu T; Campbell K; Nielsen J; Chen Y Methods Enzymol; 2018; 608():417-439. PubMed ID: 30173772 [TBL] [Abstract][Full Text] [Related]
11. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system. Lian J; HamediRad M; Hu S; Zhao H Nat Commun; 2017 Nov; 8(1):1688. PubMed ID: 29167442 [TBL] [Abstract][Full Text] [Related]
13. Metabolic engineering of yeast for production of fuels and chemicals. Nielsen J; Larsson C; van Maris A; Pronk J Curr Opin Biotechnol; 2013 Jun; 24(3):398-404. PubMed ID: 23611565 [TBL] [Abstract][Full Text] [Related]
14. Recent advances in synthetic biology for engineering isoprenoid production in yeast. Vickers CE; Williams TC; Peng B; Cherry J Curr Opin Chem Biol; 2017 Oct; 40():47-56. PubMed ID: 28623722 [TBL] [Abstract][Full Text] [Related]
15. Model-guided identification of gene deletion targets for metabolic engineering in Saccharomyces cerevisiae. Brochado AR; Patil KR Methods Mol Biol; 2014; 1152():281-94. PubMed ID: 24744040 [TBL] [Abstract][Full Text] [Related]
16. Synthetic Evolution of Metabolic Productivity Using Biosensors. Williams TC; Pretorius IS; Paulsen IT Trends Biotechnol; 2016 May; 34(5):371-381. PubMed ID: 26948437 [TBL] [Abstract][Full Text] [Related]
17. Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose. Gottardi M; Reifenrath M; Boles E; Tripp J FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582489 [TBL] [Abstract][Full Text] [Related]
18. A review on sustainable yeast biotechnological processes and applications. Nandy SK; Srivastava RK Microbiol Res; 2018 Mar; 207():83-90. PubMed ID: 29458873 [TBL] [Abstract][Full Text] [Related]
19. Saccharomyces cerevisiae as a Heterologous Host for Natural Products. Otto M; Liu D; Siewers V Methods Mol Biol; 2022; 2489():333-367. PubMed ID: 35524059 [TBL] [Abstract][Full Text] [Related]
20. Prospects of microbial cell factories developed through systems metabolic engineering. Gustavsson M; Lee SY Microb Biotechnol; 2016 Sep; 9(5):610-7. PubMed ID: 27435545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]