BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 27430955)

  • 1. Unsupported Nanoporous Gold Catalyst for Chemoselective Hydrogenation Reactions under Low Pressure: Effect of Residual Silver on the Reaction.
    Takale BS; Feng X; Lu Y; Bao M; Jin T; Minato T; Yamamoto Y
    J Am Chem Soc; 2016 Aug; 138(32):10356-64. PubMed ID: 27430955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoporous gold catalyst for highly selective semihydrogenation of alkynes: remarkable effect of amine additives.
    Yan M; Jin T; Ishikawa Y; Minato T; Fujita T; Chen LY; Bao M; Asao N; Chen MW; Yamamoto Y
    J Am Chem Soc; 2012 Oct; 134(42):17536-42. PubMed ID: 23020313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective aerobic oxidation of methanol in the coexistence of amines by nanoporous gold catalysts: highly efficient synthesis of formamides.
    Tanaka S; Minato T; Ito E; Hara M; Kim Y; Yamamoto Y; Asao N
    Chemistry; 2013 Sep; 19(36):11832-6. PubMed ID: 23946236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemoselective reduction of α,β-unsaturated aldehydes using an unsupported nanoporous gold catalyst.
    Takale BS; Wang S; Zhang X; Feng X; Yu X; Jin T; Bao M; Yamamoto Y
    Chem Commun (Camb); 2014 Nov; 50(92):14401-4. PubMed ID: 25299948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into catalytic oxidation at the Au/TiO(2) dual perimeter sites.
    Green IX; Tang W; Neurock M; Yates JT
    Acc Chem Res; 2014 Mar; 47(3):805-15. PubMed ID: 24372536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemoselective synthesis of substituted imines, secondary amines, and beta-amino carbonyl compounds from nitroaromatics through cascade reactions on gold catalysts.
    Santos LL; Serna P; Corma A
    Chemistry; 2009 Aug; 15(33):8196-203. PubMed ID: 19609994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unsupported nanoporous gold catalyst for highly selective hydroamination of alkynes.
    Lu Y; Wang Y; Li H; Li P; Feng X; Yamamoto Y; Bao M; Liu J
    RSC Adv; 2023 Jan; 13(5):3371-3376. PubMed ID: 36756435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supported gold catalysis: from small molecule activation to green chemical synthesis.
    Liu X; He L; Liu YM; Cao Y
    Acc Chem Res; 2014 Mar; 47(3):793-804. PubMed ID: 24328524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model studies with gold: a versatile oxidation and hydrogenation catalyst.
    Pan M; Gong J; Dong G; Mullins CB
    Acc Chem Res; 2014 Mar; 47(3):750-60. PubMed ID: 24635457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalysis by unsupported skeletal gold catalysts.
    Wittstock A; Bäumer M
    Acc Chem Res; 2014 Mar; 47(3):731-9. PubMed ID: 24266888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen-Doped Carbon-Supported Nickel Nanoparticles: A Robust Catalyst to Bridge the Hydrogenation of Nitriles and the Reductive Amination of Carbonyl Compounds for the Synthesis of Primary Amines.
    Zhang Y; Yang H; Chi Q; Zhang Z
    ChemSusChem; 2019 Mar; 12(6):1246-1255. PubMed ID: 30600939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective hydrogenation of butadiene over TiO2 supported copper, gold and gold-copper catalysts prepared by deposition-precipitation.
    Delannoy L; Thrimurthulu G; Reddy PS; Méthivier C; Nelayah J; Reddy BM; Ricolleau C; Louis C
    Phys Chem Chem Phys; 2014 Dec; 16(48):26514-27. PubMed ID: 25051298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designed Nanomaterials for Electrocatalytic Organic Hydrogenation Using Water as the Hydrogen Source.
    Liu C; Wu Y; Zhao B; Zhang B
    Acc Chem Res; 2023 Jul; 56(13):1872-1883. PubMed ID: 37316974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of substituted anilines from nitro compounds by using supported gold catalysts.
    Corma A; Serna P
    Nat Protoc; 2006; 1(6):2590-5. PubMed ID: 17406513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing Efficient Single-Atom Alloy Catalysts for Selective C═O Hydrogenation: A First-Principles, Active Learning and Microkinetic Study.
    Feng H; Zhang M; Ge Z; Deng Y; Pu P; Zhou W; Yuan H; Yang J; Li F; Zhang X; Zhang YW
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):55903-55915. PubMed ID: 37996252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silica-Supported Au-Ag Catalysts for the Selective Hydrogenation of Butadiene.
    Masoud N; Delannoy L; Calers C; Gallet JJ; Bournel F; de Jong KP; Louis C; de Jongh PE
    ChemCatChem; 2017 Jun; 9(12):2418-2425. PubMed ID: 30147805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High chemoselectivity of an advanced iron catalyst for the hydrogenation of aldehydes with isolated C═C bond: a computational study.
    Lu X; Cheng R; Turner N; Liu Q; Zhang M; Sun X
    J Org Chem; 2014 Oct; 79(19):9355-64. PubMed ID: 25222376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High performance of a cobalt-nitrogen complex for the reduction and reductive coupling of nitro compounds into amines and their derivatives.
    Zhou P; Jiang L; Wang F; Deng K; Lv K; Zhang Z
    Sci Adv; 2017 Feb; 3(2):e1601945. PubMed ID: 28232954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ferric hydroxide supported gold subnano clusters or quantum dots: enhanced catalytic performance in chemoselective hydrogenation.
    Liu L; Qiao B; Ma Y; Zhang J; Deng Y
    Dalton Trans; 2008 May; (19):2542-8. PubMed ID: 18443696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature.
    Wittstock A; Zielasek V; Biener J; Friend CM; Bäumer M
    Science; 2010 Jan; 327(5963):319-22. PubMed ID: 20075249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.