These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 27431036)

  • 1. Effective gene expression data generation framework based on multi-model approach.
    Sirin U; Erdogdu U; Polat F; Tan M; Alhajj R
    Artif Intell Med; 2016 Jun; 70():41-61. PubMed ID: 27431036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Employing decomposable partially observable Markov decision processes to control gene regulatory networks.
    Erdogdu U; Polat F; Alhajj R
    Artif Intell Med; 2017 Nov; 83():14-34. PubMed ID: 28733120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid framework for reverse engineering of robust Gene Regulatory Networks.
    Jafari M; Ghavami B; Sattari V
    Artif Intell Med; 2017 Jun; 79():15-27. PubMed ID: 28602483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bi-Objective RNN Model to Reconstruct Gene Regulatory Network: A Modified Multi-Objective Simulated Annealing Approach.
    Biswas S; Acharyya S
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):2053-2059. PubMed ID: 29990170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reverse engineering genetic networks using nonlinear saturation kinetics.
    Kizhakkethil Youseph AS; Chetty M; Karmakar G
    Biosystems; 2019 Aug; 182():30-41. PubMed ID: 31185246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study of Algorithms Reconstructing Gene Regulatory Network with Resampling and Conditional Mutual Information].
    Liu F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Oct; 33(5):985-90. PubMed ID: 29714955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring Gene Regulatory Networks in the Arabidopsis Root Using a Dynamic Bayesian Network Approach.
    de Luis Balaguer MA; Sozzani R
    Methods Mol Biol; 2017; 1629():331-348. PubMed ID: 28623595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Urothelial cancer gene regulatory networks inferred from large-scale RNAseq, Bead and Oligo gene expression data.
    de Matos Simoes R; Dalleau S; Williamson KE; Emmert-Streib F
    BMC Syst Biol; 2015 May; 9():21. PubMed ID: 25971253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of pairwise gene interaction using threshold logic.
    Gowda T; Vrudhula S; Kim S
    Ann N Y Acad Sci; 2009 Mar; 1158():276-86. PubMed ID: 19348649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring gene regulatory networks using a time-delayed mass action model.
    Zhao Y; Jiang M; Chen Y
    J Bioinform Comput Biol; 2016 Aug; 14(4):1650012. PubMed ID: 27093908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics.
    Aijö T; Lähdesmäki H
    Bioinformatics; 2009 Nov; 25(22):2937-44. PubMed ID: 19706742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LogBTF: gene regulatory network inference using Boolean threshold network model from single-cell gene expression data.
    Li L; Sun L; Chen G; Wong CW; Ching WK; Liu ZP
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37079737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A gene regulatory network inference model based on pseudo-siamese network.
    Wang Q; Guo M; Chen J; Duan R
    BMC Bioinformatics; 2023 Apr; 24(1):163. PubMed ID: 37085776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian differential analysis of gene regulatory networks exploiting genetic perturbations.
    Li Y; Liu D; Li T; Zhu Y
    BMC Bioinformatics; 2020 Jan; 21(1):12. PubMed ID: 31918656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A time series driven decomposed evolutionary optimization approach for reconstructing large-scale gene regulatory networks based on fuzzy cognitive maps.
    Liu J; Chi Y; Zhu C; Jin Y
    BMC Bioinformatics; 2017 May; 18(1):241. PubMed ID: 28482795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating machine learning techniques into robust data enrichment approach and its application to gene expression data.
    Erdoğdu U; Tan M; Alhajj R; Polat F; Rokne J; Demetrick D
    Int J Data Min Bioinform; 2013; 8(3):247-81. PubMed ID: 24417021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inference of dynamical gene-regulatory networks based on time-resolved multi-stimuli multi-experiment data applying NetGenerator V2.0.
    Weber M; Henkel SG; Vlaic S; Guthke R; van Zoelen EJ; Driesch D
    BMC Syst Biol; 2013 Jan; 7():1. PubMed ID: 23280066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inference of gene regulatory networks from time series by Tsallis entropy.
    Lopes FM; de Oliveira EA; Cesar RM
    BMC Syst Biol; 2011 May; 5():61. PubMed ID: 21545720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new asynchronous parallel algorithm for inferring large-scale gene regulatory networks.
    Xiao X; Zhang W; Zou X
    PLoS One; 2015; 10(3):e0119294. PubMed ID: 25807392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.