BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 27431058)

  • 1. Phospho-transfer networks and ATP homeostasis in response to an ineffective electron transport chain in Pseudomonas fluorescens.
    Appanna VP; Alhasawi AA; Auger C; Thomas SC; Appanna VD
    Arch Biochem Biophys; 2016 Sep; 606():26-33. PubMed ID: 27431058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic networks to generate pyruvate, PEP and ATP from glycerol in Pseudomonas fluorescens.
    Alhasawi A; Thomas SC; Appanna VD
    Enzyme Microb Technol; 2016 Apr; 85():51-6. PubMed ID: 26920481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel ATP-generating machinery to counter nitrosative stress is mediated by substrate-level phosphorylation.
    Auger C; Appanna VD
    Biochim Biophys Acta; 2015 Jan; 1850(1):43-50. PubMed ID: 25304769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fumarate metabolism and ATP production in Pseudomonas fluorescens exposed to nitrosative stress.
    Appanna VP; Auger C; Thomas SC; Omri A
    Antonie Van Leeuwenhoek; 2014 Sep; 106(3):431-8. PubMed ID: 24923559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zinc toxicity and ATP production in Pseudomonas fluorescens.
    Alhasawi A; Auger C; Appanna VP; Chahma M; Appanna VD
    J Appl Microbiol; 2014 Jul; 117(1):65-73. PubMed ID: 24629129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen peroxide stress provokes a metabolic reprogramming in Pseudomonas fluorescens: enhanced production of pyruvate.
    Bignucolo A; Appanna VP; Thomas SC; Auger C; Han S; Omri A; Appanna VD
    J Biotechnol; 2013 Sep; 167(3):309-15. PubMed ID: 23871654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A facile electrophoretic technique to monitor phosphoenolpyruvate-dependent kinases.
    Auger C; Appanna V; Castonguay Z; Han S; Appanna VD
    Electrophoresis; 2012 Apr; 33(7):1095-101. PubMed ID: 22539312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycine metabolism and anti-oxidative defence mechanisms in Pseudomonas fluorescens.
    Alhasawi A; Castonguay Z; Appanna ND; Auger C; Appanna VD
    Microbiol Res; 2015 Feb; 171():26-31. PubMed ID: 25644949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of glutamine synthetase in energy production and glutamine metabolism during oxidative stress.
    Aldarini N; Alhasawi AA; Thomas SC; Appanna VD
    Antonie Van Leeuwenhoek; 2017 May; 110(5):629-639. PubMed ID: 28097538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic adaptation and ATP homeostasis in Pseudomonas fluorescens exposed to phosphate stress.
    Legendre F; MacLean A; Tharmalingam S; Appanna VD
    World J Microbiol Biotechnol; 2022 Nov; 38(12):255. PubMed ID: 36319705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphoenolpyruvate synthetase and pyruvate, orthophosphate dikinase: stereochemical consequences at both the beta-phospho and gamma-phospho groups of ATP.
    Cook AG; Knowles JR
    Biochemistry; 1985 Jan; 24(1):51-8. PubMed ID: 2986676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoenolpyruvate synthetase and pyruvate, phosphate dikinase of Thermoproteus tenax: key pieces in the puzzle of archaeal carbohydrate metabolism.
    Tjaden B; Plagens A; Dörr C; Siebers B; Hensel R
    Mol Microbiol; 2006 Apr; 60(2):287-98. PubMed ID: 16573681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The metabolic reprogramming evoked by nitrosative stress triggers the anaerobic utilization of citrate in Pseudomonas fluorescens.
    Auger C; Lemire J; Cecchini D; Bignucolo A; Appanna VD
    PLoS One; 2011; 6(12):e28469. PubMed ID: 22145048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic adaptation and NADPH homeostasis evoked by a sulfur-deficient environment in Pseudomonas fluorescens.
    Legendre F; Tharmalingam S; Bley AM; MacLean A; Appanna VD
    Antonie Van Leeuwenhoek; 2020 May; 113(5):605-616. PubMed ID: 31828449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudomonas fluorescens orchestrates a fine metabolic-balancing act to counter aluminium toxicity.
    Lemire J; Mailloux R; Auger C; Whalen D; Appanna VD
    Environ Microbiol; 2010 Jun; 12(6):1384-90. PubMed ID: 20353438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The tricarboxylic acid cycle, an ancient metabolic network with a novel twist.
    Mailloux RJ; Bériault R; Lemire J; Singh R; Chénier DR; Hamel RD; Appanna VD
    PLoS One; 2007 Aug; 2(8):e690. PubMed ID: 17668068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyruvate,orthophosphate dikinase in leaves and chloroplasts of C(3) plants undergoes light-/dark-induced reversible phosphorylation.
    Chastain CJ; Fries JP; Vogel JA; Randklev CL; Vossen AP; Dittmer SK; Watkins EE; Fiedler LJ; Wacker SA; Meinhover KC; Sarath G; Chollet R
    Plant Physiol; 2002 Apr; 128(4):1368-78. PubMed ID: 11950985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic mechanism and metabolic role of pyruvate phosphate dikinase from Entamoeba histolytica.
    Varela-Gómez M; Moreno-Sánchez R; Pardo JP; Perez-Montfort R
    J Biol Chem; 2004 Dec; 279(52):54124-30. PubMed ID: 15485834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic manipulation by
    MacLean A; Bley AM; Appanna VP; Appanna VD
    J Med Microbiol; 2020 Mar; 69(3):339-346. PubMed ID: 31961786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic evidence for separate site catalysis by pyruvate phosphate dikinase.
    Thrall SH; Dunaway-Mariano D
    Biochemistry; 1994 Feb; 33(5):1103-7. PubMed ID: 8110741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.