BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 27431206)

  • 1. In vitro characterization of neurite extension using induced pluripotent stem cells derived from lissencephaly patients with TUBA1A missense mutations.
    Bamba Y; Shofuda T; Kato M; Pooh RK; Tateishi Y; Takanashi J; Utsunomiya H; Sumida M; Kanematsu D; Suemizu H; Higuchi Y; Akamatsu W; Gallagher D; Miller FD; Yamasaki M; Kanemura Y; Okano H
    Mol Brain; 2016 Jul; 9(1):70. PubMed ID: 27431206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CHCHD2 is down-regulated in neuronal cells differentiated from iPS cells derived from patients with lissencephaly.
    Shimojima K; Okumura A; Hayashi M; Kondo T; Inoue H; Yamamoto T
    Genomics; 2015 Oct; 106(4):196-203. PubMed ID: 26188257
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Hoff KJ; Aiken JE; Gutierrez MA; Franco SJ; Moore JK
    Elife; 2022 May; 11():. PubMed ID: 35511030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuropathological phenotype of a distinct form of lissencephaly associated with mutations in TUBA1A.
    Fallet-Bianco C; Loeuillet L; Poirier K; Loget P; Chapon F; Pasquier L; Saillour Y; Beldjord C; Chelly J; Francis F
    Brain; 2008 Sep; 131(Pt 9):2304-20. PubMed ID: 18669490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refinement of cortical dysgeneses spectrum associated with TUBA1A mutations.
    Bahi-Buisson N; Poirier K; Boddaert N; Saillour Y; Castelnau L; Philip N; Buyse G; Villard L; Joriot S; Marret S; Bourgeois M; Van Esch H; Lagae L; Amiel J; Hertz-Pannier L; Roubertie A; Rivier F; Pinard JM; Beldjord C; Chelly J
    J Med Genet; 2008 Oct; 45(10):647-53. PubMed ID: 18728072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in vitro model of lissencephaly: expanding the role of DCX during neurogenesis.
    Shahsavani M; Pronk RJ; Falk R; Lam M; Moslem M; Linker SB; Salma J; Day K; Schuster J; Anderlid BM; Dahl N; Gage FH; Falk A
    Mol Psychiatry; 2018 Jul; 23(7):1674-1684. PubMed ID: 28924182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TUBA1A mutations identified in lissencephaly patients dominantly disrupt neuronal migration and impair dynein activity.
    Aiken J; Moore JK; Bates EA
    Hum Mol Genet; 2019 Apr; 28(8):1227-1243. PubMed ID: 30517687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refining the phenotype of alpha-1a Tubulin (TUBA1A) mutation in patients with classical lissencephaly.
    Morris-Rosendahl DJ; Najm J; Lachmeijer AM; Sztriha L; Martins M; Kuechler A; Haug V; Zeschnigk C; Martin P; Santos M; Vasconcelos C; Omran H; Kraus U; Van der Knaap MS; Schuierer G; Kutsche K; Uyanik G
    Clin Genet; 2008 Nov; 74(5):425-33. PubMed ID: 18954413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TUBA1A mutation-associated lissencephaly: case report and review of the literature.
    Sohal AP; Montgomery T; Mitra D; Ramesh V
    Pediatr Neurol; 2012 Feb; 46(2):127-31. PubMed ID: 22264709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin-dependent neural cell identities in differentiated human iPSCs in vitro and after transplantation into the mouse brain.
    Hargus G; Ehrlich M; Araúzo-Bravo MJ; Hemmer K; Hallmann AL; Reinhardt P; Kim KP; Adachi K; Santourlidis S; Ghanjati F; Fauser M; Ossig C; Storch A; Kim JB; Schwamborn JC; Sterneckert J; Schöler HR; Kuhlmann T; Zaehres H
    Cell Rep; 2014 Sep; 8(6):1697-1703. PubMed ID: 25220454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TUBA1A mutations cause wide spectrum lissencephaly (smooth brain) and suggest that multiple neuronal migration pathways converge on alpha tubulins.
    Kumar RA; Pilz DT; Babatz TD; Cushion TD; Harvey K; Topf M; Yates L; Robb S; Uyanik G; Mancini GM; Rees MI; Harvey RJ; Dobyns WB
    Hum Mol Genet; 2010 Jul; 19(14):2817-27. PubMed ID: 20466733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly efficient methods to obtain homogeneous dorsal neural progenitor cells from human and mouse embryonic stem cells and induced pluripotent stem cells.
    Zhang M; Ngo J; Pirozzi F; Sun YP; Wynshaw-Boris A
    Stem Cell Res Ther; 2018 Mar; 9(1):67. PubMed ID: 29544541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large spectrum of lissencephaly and pachygyria phenotypes resulting from de novo missense mutations in tubulin alpha 1A (TUBA1A).
    Poirier K; Keays DA; Francis F; Saillour Y; Bahi N; Manouvrier S; Fallet-Bianco C; Pasquier L; Toutain A; Tuy FP; Bienvenu T; Joriot S; Odent S; Ville D; Desguerre I; Goldenberg A; Moutard ML; Fryns JP; van Esch H; Harvey RJ; Siebold C; Flint J; Beldjord C; Chelly J
    Hum Mutat; 2007 Nov; 28(11):1055-64. PubMed ID: 17584854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel human model of the neurodegenerative disease GM1 gangliosidosis using induced pluripotent stem cells demonstrates inflammasome activation.
    Son MY; Kwak JE; Seol B; Lee DY; Jeon H; Cho YS
    J Pathol; 2015 Sep; 237(1):98-110. PubMed ID: 25925601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Engineered N-Cadherin Substrate for Differentiation, Survival, and Selection of Pluripotent Stem Cell-Derived Neural Progenitors.
    Haque A; Adnan N; Motazedian A; Akter F; Hossain S; Kutsuzawa K; Nag K; Kobatake E; Akaike T
    PLoS One; 2015; 10(8):e0135170. PubMed ID: 26244942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural induction of porcine-induced pluripotent stem cells and further differentiation using glioblastoma-cultured medium.
    Kim E; Kim M; Hwang SU; Kim J; Lee G; Park YS; Hyun SH
    J Cell Mol Med; 2019 Mar; 23(3):2052-2063. PubMed ID: 30609263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human iPSC-based models highlight defective glial and neuronal differentiation from neural progenitor cells in metachromatic leukodystrophy.
    Frati G; Luciani M; Meneghini V; De Cicco S; Ståhlman M; Blomqvist M; Grossi S; Filocamo M; Morena F; Menegon A; Martino S; Gritti A
    Cell Death Dis; 2018 Jun; 9(6):698. PubMed ID: 29899471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FOXOs modulate proteasome activity in human-induced pluripotent stem cells of Huntington's disease and their derived neural cells.
    Liu Y; Qiao F; Leiferman PC; Ross A; Schlenker EH; Wang H
    Hum Mol Genet; 2017 Nov; 26(22):4416-4428. PubMed ID: 28973411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation and Neuronal Differentiation of Patient-Specific Induced Pluripotent Stem Cells Derived from Niemann-Pick Type C1 Fibroblasts.
    Trilck M; Hübner R; Frech MJ
    Methods Mol Biol; 2016; 1353():233-59. PubMed ID: 25520288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induced pluripotent stem cell-derived neural progenitor cell transplantation promotes regeneration and functional recovery after post-traumatic stress disorder in rats.
    Liu Q; Zhang L; Zhang J
    Biomed Pharmacother; 2021 Jan; 133():110981. PubMed ID: 33186796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.