These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 27431220)
1. Cryptosporidium and Toxoplasma Parasites Are Inhibited by a Benzoxaborole Targeting Leucyl-tRNA Synthetase. Palencia A; Liu RJ; Lukarska M; Gut J; Bougdour A; Touquet B; Wang ED; Li X; Alley MR; Freund YR; Rosenthal PJ; Hakimi MA; Cusack S Antimicrob Agents Chemother; 2016 Oct; 60(10):5817-27. PubMed ID: 27431220 [TBL] [Abstract][Full Text] [Related]
2. Crystal structures of the human and fungal cytosolic Leucyl-tRNA synthetase editing domains: A structural basis for the rational design of antifungal benzoxaboroles. Seiradake E; Mao W; Hernandez V; Baker SJ; Plattner JJ; Alley MR; Cusack S J Mol Biol; 2009 Jul; 390(2):196-207. PubMed ID: 19426743 [TBL] [Abstract][Full Text] [Related]
3. Deciphering the interaction of benzoxaborole inhibitor AN2690 with connective polypeptide 1 (CP1) editing domain of Tandon S; Manhas R; Tiwari N; Munde M; Vijayan R; Gourinath S; Muthuswami R; Madhubala R J Biosci; 2020; 45():. PubMed ID: 32385222 [TBL] [Abstract][Full Text] [Related]
5. Post-transfer editing by a eukaryotic leucyl-tRNA synthetase resistant to the broad-spectrum drug AN2690. Zhou XL; Tan M; Wang M; Chen X; Wang ED Biochem J; 2010 Sep; 430(2):325-33. PubMed ID: 20557293 [TBL] [Abstract][Full Text] [Related]
6. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Rock FL; Mao W; Yaremchuk A; Tukalo M; Crépin T; Zhou H; Zhang YK; Hernandez V; Akama T; Baker SJ; Plattner JJ; Shapiro L; Martinis SA; Benkovic SJ; Cusack S; Alley MR Science; 2007 Jun; 316(5832):1759-61. PubMed ID: 17588934 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the Resistance Mechanism of a Benzoxaborole Inhibitor Reveals Insight into the Leucyl-tRNA Synthetase Editing Mechanism. Zhao H; Palencia A; Seiradake E; Ghaemi Z; Cusack S; Luthey-Schulten Z; Martinis S ACS Chem Biol; 2015 Oct; 10(10):2277-85. PubMed ID: 26172575 [TBL] [Abstract][Full Text] [Related]
8. In Vitro and In Vivo Activities of Sulfur-Containing Linear Bisphosphonates against Apicomplexan Parasites. Szajnman SH; Galaka T; Li ZH; Li C; Howell NM; Chao MN; Striepen B; Muralidharan V; Moreno SN; Rodriguez JB Antimicrob Agents Chemother; 2017 Feb; 61(2):. PubMed ID: 27895021 [TBL] [Abstract][Full Text] [Related]
9. Antibacterial Activity and Mode of Action of a Sulfonamide-Based Class of Oxaborole Leucyl-tRNA-Synthetase Inhibitors. Si Y; Basak S; Li Y; Merino J; Iuliano JN; Walker SG; Tonge PJ ACS Infect Dis; 2019 Jul; 5(7):1231-1238. PubMed ID: 31007018 [TBL] [Abstract][Full Text] [Related]
10. Molecular modeling and molecular dynamics simulation study of archaeal leucyl-tRNA synthetase in complex with different mischarged tRNA in editing conformation. Rayevsky AV; Sharifi M; Tukalo MA J Mol Graph Model; 2017 Sep; 76():289-295. PubMed ID: 28743072 [TBL] [Abstract][Full Text] [Related]
11. Identification of Cryptosporidium parvum active chemical series by Repurposing the open access malaria box. Bessoff K; Spangenberg T; Foderaro JE; Jumani RS; Ward GE; Huston CD Antimicrob Agents Chemother; 2014 May; 58(5):2731-9. PubMed ID: 24566188 [TBL] [Abstract][Full Text] [Related]
12. Characterization of benzoxaborole-based antifungal resistance mutations demonstrates that editing depends on electrostatic stabilization of the leucyl-tRNA synthetase editing cap. Sarkar J; Mao W; Lincecum TL; Alley MR; Martinis SA FEBS Lett; 2011 Oct; 585(19):2986-91. PubMed ID: 21856301 [TBL] [Abstract][Full Text] [Related]
13. Identification of Trypanosoma brucei leucyl-tRNA synthetase inhibitors by pharmacophore- and docking-based virtual screening and synthesis. Zhao Y; Wang Q; Meng Q; Ding D; Yang H; Gao G; Li D; Zhu W; Zhou H Bioorg Med Chem; 2012 Feb; 20(3):1240-50. PubMed ID: 22249121 [TBL] [Abstract][Full Text] [Related]
14. Discovery of a potent benzoxaborole-based anti-pneumococcal agent targeting leucyl-tRNA synthetase. Hu QH; Liu RJ; Fang ZP; Zhang J; Ding YY; Tan M; Wang M; Pan W; Zhou HC; Wang ED Sci Rep; 2013; 3():2475. PubMed ID: 23959225 [TBL] [Abstract][Full Text] [Related]
15. Design and synthesis of N-(3-sulfamoylphenyl)amides as Trypanosoma brucei leucyl-tRNA synthetase inhibitors. Li Z; Xin W; Wang Q; Zhu M; Zhou H Eur J Med Chem; 2021 May; 217():113319. PubMed ID: 33725631 [TBL] [Abstract][Full Text] [Related]
16. Crystal structures of the editing domain of Escherichia coli leucyl-tRNA synthetase and its complexes with Met and Ile reveal a lock-and-key mechanism for amino acid discrimination. Liu Y; Liao J; Zhu B; Wang ED; Ding J Biochem J; 2006 Mar; 394(Pt 2):399-407. PubMed ID: 16277600 [TBL] [Abstract][Full Text] [Related]
17. Discovery of a Potent and Specific M. tuberculosis Leucyl-tRNA Synthetase Inhibitor: (S)-3-(Aminomethyl)-4-chloro-7-(2-hydroxyethoxy)benzo[c][1,2]oxaborol-1(3H)-ol (GSK656). Li X; Hernandez V; Rock FL; Choi W; Mak YSL; Mohan M; Mao W; Zhou Y; Easom EE; Plattner JJ; Zou W; Pérez-Herrán E; Giordano I; Mendoza-Losana A; Alemparte C; Rullas J; Angulo-Barturen I; Crouch S; Ortega F; Barros D; Alley MRK J Med Chem; 2017 Oct; 60(19):8011-8026. PubMed ID: 28953378 [TBL] [Abstract][Full Text] [Related]
18. Defining Stage-Specific Activity of Potent New Inhibitors of Cryptosporidium parvum Growth Funkhouser-Jones LJ; Ravindran S; Sibley LD mBio; 2020 Mar; 11(2):. PubMed ID: 32127445 [No Abstract] [Full Text] [Related]
19. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain. Lee KW; Briggs JM Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565 [TBL] [Abstract][Full Text] [Related]
20. Development of a Cytopathic Effect-Based Phenotypic Screening Assay against Cryptosporidium. Chao AT; Lee BH; Wan KF; Selva J; Zou B; Gedeck P; Beer DJ; Diagana TT; Bonamy GMC; Manjunatha UH ACS Infect Dis; 2018 Apr; 4(4):635-645. PubMed ID: 29341586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]