These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 27431779)

  • 1. Severe hypoxemia induced by prolonged expiration and reduced frequency breathing during submaximal swimming.
    Toubekis AG; Beidaris N; Botonis PG; Koskolou M
    J Sports Sci; 2017 Jun; 35(11):1025-1033. PubMed ID: 27431779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoventilation Training at Supramaximal Intensity Improves Swimming Performance.
    Woorons X; Mucci P; Richalet JP; Pichon A
    Med Sci Sports Exerc; 2016 Jun; 48(6):1119-28. PubMed ID: 26741118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of swim intensity on responses to dynamic apnoea.
    Guimard A; Collomp K; Zorgati H; Brulaire S; Woorons X; Amiot V; Prieur F
    J Sports Sci; 2018 May; 36(9):1015-1021. PubMed ID: 28682161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of inspiratory muscle fatigue on acid-base status and performance during race-paced middle-distance swimming.
    Lomax M; Kapus J; Webb S; Ušaj A
    J Sports Sci; 2019 Jul; 37(13):1499-1505. PubMed ID: 30724711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic responses to controlled frequency breathing in competitive swimmers.
    Town GP; Vanness JM
    Med Sci Sports Exerc; 1990 Feb; 22(1):112-6. PubMed ID: 2406539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeated-Sprint Training in Hypoxia Induced by Voluntary Hypoventilation in Swimming.
    Trincat L; Woorons X; Millet GP
    Int J Sports Physiol Perform; 2017 Mar; 12(3):329-335. PubMed ID: 27294771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Swimmers can train in hypoxia at sea level through voluntary hypoventilation.
    Woorons X; Gamelin FX; Lamberto C; Pichon A; Richalet JP
    Respir Physiol Neurobiol; 2014 Jan; 190():33-9. PubMed ID: 24012989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self selected speed and maximal lactate steady state speed in swimming.
    Baron B; Dekerle J; Depretz S; Lefevre T; Pelayo P
    J Sports Med Phys Fitness; 2005 Mar; 45(1):1-6. PubMed ID: 16208283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pool length on blood lactate, heart rate, and velocity in swimming.
    Keskinen OP; Keskinen KL; Mero AA
    Int J Sports Med; 2007 May; 28(5):407-13. PubMed ID: 17111309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of reduced frequency breathing on arterial hypoxemia during exercise.
    Yamamoto Y; Mutoh Y; Kobayashi H; Miyashita M
    Eur J Appl Physiol Occup Physiol; 1987; 56(5):522-7. PubMed ID: 3653092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perceived exertion, time of immersion and physiological correlates in synchronized swimming.
    Rodríguez-Zamora L; Iglesias X; Barrero A; Chaverri D; Irurtia A; Erola P; Rodríguez FA
    Int J Sports Med; 2014 May; 35(5):403-11. PubMed ID: 24081620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heart-Rate Variability in Elite Synchronized Swimmers.
    Solana-Tramunt M; Morales J; Buscà B; Carbonell M; Rodríguez-Zamora L
    Int J Sports Physiol Perform; 2019 Apr; 14(4):464-471. PubMed ID: 30300066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of 3000-m swimming on subsequent 3-h cycling performance: implications for ultraendurance triathletes.
    Laursen PB; Rhodes EC; Langill RH
    Eur J Appl Physiol; 2000 Sep; 83(1):28-33. PubMed ID: 11072770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood lactate and metabolic responses to controlled frequency breathing during graded swimming.
    West SA; Drummond MJ; Vanness JM; Ciccolella ME
    J Strength Cond Res; 2005 Nov; 19(4):772-6. PubMed ID: 16287367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle Fatigue When Swimming Intermittently Above and Below Critical Speed.
    Dekerle J; Paterson J
    Int J Sports Physiol Perform; 2016 Jul; 11(5):602-7. PubMed ID: 26457829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breath holding with water immersion in synchronized swimmers and untrained women.
    Alentejano TC; Marshall D; Bell GJ
    Res Sports Med; 2010 Apr; 18(2):97-114. PubMed ID: 20397113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiorespiratory performance and blood chemistry during swimming and recovery in three populations of elite swimmers: Adult sockeye salmon.
    Eliason EJ; Clark TD; Hinch SG; Farrell AP
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Oct; 166(2):385-97. PubMed ID: 23880060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the energy contribution during single and repeated sprint swimming.
    Peyrebrune MC; Toubekis AG; Lakomy HK; Nevill ME
    Scand J Med Sci Sports; 2014 Apr; 24(2):369-76. PubMed ID: 22897515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of warm-up on blood gases, lactate and acid-base status during sprint swimming.
    Robergs RA; Costill DL; Fink WJ; Williams C; Pascoe DD; Chwalbinska-Moneta J; Davis JA
    Int J Sports Med; 1990 Aug; 11(4):273-8. PubMed ID: 2121653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic and ventilatory thresholds assessment in front crawl swimming.
    Ribeiro J; Figueiredo P; Sousa M; De Jesus K; Keskinen K; Vilas-Boas JP; Fernandes RJ
    J Sports Med Phys Fitness; 2015; 55(7-8):701-7. PubMed ID: 25069963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.