These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 27431861)
61. 3D bioprinted silk fibroin hydrogels for tissue engineering. Kim SH; Hong H; Ajiteru O; Sultan MT; Lee YJ; Lee JS; Lee OJ; Lee H; Park HS; Choi KY; Lee JS; Ju HW; Hong IS; Park CH Nat Protoc; 2021 Dec; 16(12):5484-5532. PubMed ID: 34716451 [TBL] [Abstract][Full Text] [Related]
62. Inkjet-Spray Hybrid Printing for 3D Freeform Fabrication of Multilayered Hydrogel Structures. Yoon S; Park JA; Lee HR; Yoon WH; Hwang DS; Jung S Adv Healthc Mater; 2018 Jul; 7(14):e1800050. PubMed ID: 29708307 [TBL] [Abstract][Full Text] [Related]
63. Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting. Müller M; Becher J; Schnabelrauch M; Zenobi-Wong M Biofabrication; 2015 Aug; 7(3):035006. PubMed ID: 26260872 [TBL] [Abstract][Full Text] [Related]
64. Ionically annealed zwitterionic microgels for bioprinting of cartilaginous constructs. Surman F; Asadikorayem M; Weber P; Weber D; Zenobi-Wong M Biofabrication; 2024 Jan; 16(2):. PubMed ID: 38176081 [TBL] [Abstract][Full Text] [Related]
65. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications. Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382 [TBL] [Abstract][Full Text] [Related]
66. Bioprinted Scaffolds for Cartilage Tissue Engineering. Kang HW; Yoo JJ; Atala A Methods Mol Biol; 2015; 1340():161-9. PubMed ID: 26445837 [TBL] [Abstract][Full Text] [Related]
67. Biofabrication of skin tissue constructs using alginate, gelatin and diethylaminoethyl cellulose bioink. Somasekharan LT; Raju R; Kumar S; Geevarghese R; Nair RP; Kasoju N; Bhatt A Int J Biol Macromol; 2021 Oct; 189():398-409. PubMed ID: 34419550 [TBL] [Abstract][Full Text] [Related]
68. Customization of an Ultrafast Thiol-Norbornene Photo-Cross-Linkable Hyaluronic Acid-Gelatin Bioink for Extrusion-Based 3D Bioprinting. Xiao X; Yang Y; Lai Y; Huang Z; Li C; Yang S; Niu C; Yang L; Feng L Biomacromolecules; 2023 Nov; 24(11):5414-5427. PubMed ID: 37883334 [TBL] [Abstract][Full Text] [Related]
69. Sonochemical Degradation of Gelatin Methacryloyl to Control Viscoelasticity for Inkjet Bioprinting. Lee Y; Park JA; Tuladhar T; Jung S Macromol Biosci; 2023 May; 23(5):e2200509. PubMed ID: 36896820 [TBL] [Abstract][Full Text] [Related]
70. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts. Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292 [TBL] [Abstract][Full Text] [Related]
71. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing. Cheng QP; Hsu SH Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162 [TBL] [Abstract][Full Text] [Related]
72. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects. Compaan AM; Song K; Chai W; Huang Y ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226 [TBL] [Abstract][Full Text] [Related]
73. Infiltration from Suspension Systems Enables Effective Modulation of 3D Scaffold Properties in Suspension Bioprinting. Wang C; Honiball JR; Lin J; Xia X; Lau DSA; Chen B; Deng L; Lu WW ACS Appl Mater Interfaces; 2022 Jun; 14(24):27575-27588. PubMed ID: 35674114 [TBL] [Abstract][Full Text] [Related]
74. Hydrogel Bioink Reinforcement for Additive Manufacturing: A Focused Review of Emerging Strategies. Chimene D; Kaunas R; Gaharwar AK Adv Mater; 2020 Jan; 32(1):e1902026. PubMed ID: 31599073 [TBL] [Abstract][Full Text] [Related]
75. Vertical Extrusion Cryo(bio)printing for Anisotropic Tissue Manufacturing. Luo Z; Tang G; Ravanbakhsh H; Li W; Wang M; Kuang X; Garciamendez-Mijares CE; Lian L; Yi S; Liao J; Xie M; Guo J; Zhou Z; Zhang YS Adv Mater; 2022 Mar; 34(12):e2108931. PubMed ID: 34935203 [TBL] [Abstract][Full Text] [Related]
76. Dual-Stage Crosslinking of a Gel-Phase Bioink Improves Cell Viability and Homogeneity for 3D Bioprinting. Dubbin K; Hori Y; Lewis KK; Heilshorn SC Adv Healthc Mater; 2016 Oct; 5(19):2488-2492. PubMed ID: 27581767 [TBL] [Abstract][Full Text] [Related]
77. Fish scale containing alginate dialdehyde-gelatin bioink for bone tissue engineering. Kara Özenler A; Distler T; Tihminlioglu F; Boccaccini AR Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36706451 [TBL] [Abstract][Full Text] [Related]
78. In-situ ionic crosslinking of 3D bioprinted cell-hydrogel constructs for mechanical reinforcement and improved cell growth. Lee JE; Heo SW; Kim CH; Park SJ; Park SH; Kim TH Biomater Adv; 2023 Apr; 147():213322. PubMed ID: 36758283 [TBL] [Abstract][Full Text] [Related]
79. Hybrid microscaffold-based 3D bioprinting of multi-cellular constructs with high compressive strength: A new biofabrication strategy. Tan YJ; Tan X; Yeong WY; Tor SB Sci Rep; 2016 Dec; 6():39140. PubMed ID: 27966623 [TBL] [Abstract][Full Text] [Related]
80. 3D bioprinting of complex channels within cell-laden hydrogels. Ji S; Almeida E; Guvendiren M Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]