BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 27431939)

  • 21. Effects of calcitriol on experimental spinal cord injury in rats.
    Zhou KL; Chen DH; Jin HM; Wu K; Wang XY; Xu HZ; Zhang XL
    Spinal Cord; 2016 Jul; 54(7):510-6. PubMed ID: 26729579
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synchrotron radiation micro-CT as a novel tool to evaluate the effect of agomir-210 in a rat spinal cord injury model.
    Cao Y; Wu TD; Wu H; Lang Y; Li DZ; Ni SF; Lu HB; Hu JZ
    Brain Res; 2017 Jan; 1655():55-65. PubMed ID: 27847197
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MicroRNA‑21 promotes neurite outgrowth by regulating PDCD4 in a rat model of spinal cord injury.
    Jiang Y; Zhao S; Ding Y; Nong L; Li H; Gao G; Zhou D; Xu N
    Mol Med Rep; 2017 Sep; 16(3):2522-2528. PubMed ID: 28656242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Minocycline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat.
    Lee SM; Yune TY; Kim SJ; Park DW; Lee YK; Kim YC; Oh YJ; Markelonis GJ; Oh TH
    J Neurotrauma; 2003 Oct; 20(10):1017-27. PubMed ID: 14588118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Early applied electric field stimulation attenuates secondary apoptotic responses and exerts neuroprotective effects in acute spinal cord injury of rats.
    Zhang C; Zhang G; Rong W; Wang A; Wu C; Huo X
    Neuroscience; 2015 Apr; 291():260-71. PubMed ID: 25701712
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The protective effect of microRNA-21 in neurons after spinal cord injury.
    Zhang T; Ni S; Luo Z; Lang Y; Hu J; Lu H
    Spinal Cord; 2019 Feb; 57(2):141-149. PubMed ID: 30089893
    [TBL] [Abstract][Full Text] [Related]  

  • 27. miR-21 and miR-19b delivered by hMSC-derived EVs regulate the apoptosis and differentiation of neurons in patients with spinal cord injury.
    Xu G; Ao R; Zhi Z; Jia J; Yu B
    J Cell Physiol; 2019 Jul; 234(7):10205-10217. PubMed ID: 30387159
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simvastatin inhibits neural cell apoptosis and promotes locomotor recovery via activation of Wnt/β-catenin signaling pathway after spinal cord injury.
    Gao K; Shen Z; Yuan Y; Han D; Song C; Guo Y; Mei X
    J Neurochem; 2016 Jul; 138(1):139-49. PubMed ID: 26443048
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resveratrol protects against spinal cord injury by activating autophagy and inhibiting apoptosis mediated by the SIRT1/AMPK signaling pathway.
    Zhao H; Chen S; Gao K; Zhou Z; Wang C; Shen Z; Guo Y; Li Z; Wan Z; Liu C; Mei X
    Neuroscience; 2017 Apr; 348():241-251. PubMed ID: 28238848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of lithium chloride on BDNF, NT3, and their receptor mRNA levels in the spinal contusion rat models.
    Abdanipour A; Moradi F; Fakheri F; Ghorbanlou M; Nejatbakhsh R
    Neurol Res; 2019 Jun; 41(6):577-583. PubMed ID: 30879425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. miR-27a promotion resulting from silencing of HDAC3 facilitates the recovery of spinal cord injury by inhibiting PAK6 expression in rats.
    Zhou Q; Feng X; Ye F; Lei F; Jia X; Feng D
    Life Sci; 2020 Nov; 260():118098. PubMed ID: 32679145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Upregulation of miR‑128 inhibits neuronal cell apoptosis following spinal cord injury via FasL downregulation by repressing ULK1.
    Liu R; Peng Z; Zhang Y; Li R; Wang Y
    Mol Med Rep; 2021 Sep; 24(3):. PubMed ID: 34296305
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lycopsamine Exerts Protective Effects and Improves Functional Outcome After Spinal Cord Injury in Rats by Suppressing Cell Death.
    Jin J; Li H; Zhao G; Jiang S
    Med Sci Monit; 2018 Oct; 24():7444-7450. PubMed ID: 30335732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lipopolysaccharide preconditioning attenuates neuroapoptosis and improves functional recovery through activation of Nrf2 in traumatic spinal cord injury rats.
    Li WC; Jiang DM; Hu N; Qi XT; Qiao B; Luo XJ
    Int J Neurosci; 2013 Apr; 123(4):240-7. PubMed ID: 23215850
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long Coding RNA XIST Contributes to Neuronal Apoptosis through the Downregulation of AKT Phosphorylation and Is Negatively Regulated by miR-494 in Rat Spinal Cord Injury.
    Gu S; Xie R; Liu X; Shou J; Gu W; Che X
    Int J Mol Sci; 2017 Apr; 18(4):. PubMed ID: 28368292
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Epidermal growth factor regulates apoptosis and oxidative stress in a rat model of spinal cord injury.
    Ozturk AM; Sozbilen MC; Sevgili E; Dagci T; Özyalcin H; Armagan G
    Injury; 2018 Jun; 49(6):1038-1045. PubMed ID: 29602490
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Designing multifunctionalized selenium nanoparticles to reverse oxidative stress-induced spinal cord injury by attenuating ROS overproduction and mitochondria dysfunction.
    Rao S; Lin Y; Du Y; He L; Huang G; Chen B; Chen T
    J Mater Chem B; 2019 Apr; 7(16):2648-2656. PubMed ID: 32254998
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protection of erythropoietin on experimental spinal cord injury by reducing the expression of thrombospondin-1 and transforming growth factor-beta.
    Fang XQ; Fang M; Fan SW; Gu CL
    Chin Med J (Engl); 2009 Jul; 122(14):1631-5. PubMed ID: 19719963
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Effect of curcumin on calcitionin gene related peptide expression after spinal cord injury in rats].
    Sun D; Xu J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Oct; 27(10):1225-9. PubMed ID: 24397136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of tetramethylpyrazine on microglia activation in spinal cord compression injury of mice.
    Shin JW; Moon JY; Seong JW; Song SH; Cheong YJ; Kang C; Sohn NW
    Am J Chin Med; 2013; 41(6):1361-76. PubMed ID: 24228606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.