BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 27432065)

  • 1. Evolutionary history of the reprimo tumor suppressor gene family in vertebrates with a description of a new reprimo gene lineage.
    Wichmann IA; Zavala K; Hoffmann FG; Vandewege MW; Corvalán AH; Amigo JD; Owen GI; Opazo JC
    Gene; 2016 Oct; 591(1):245-254. PubMed ID: 27432065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of the gastrin-cholecystokinin gene family revealed by synteny analysis.
    Dupré D; Tostivint H
    Gen Comp Endocrinol; 2014 Jan; 195():164-73. PubMed ID: 24231682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary dynamics of the interferon-induced transmembrane gene family in vertebrates.
    Zhang Z; Liu J; Li M; Yang H; Zhang C
    PLoS One; 2012; 7(11):e49265. PubMed ID: 23166625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary history of the alpha2,8-sialyltransferase (ST8Sia) gene family: tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes.
    Harduin-Lepers A; Petit D; Mollicone R; Delannoy P; Petit JM; Oriol R
    BMC Evol Biol; 2008 Sep; 8():258. PubMed ID: 18811928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved synteny between the Ciona genome and human paralogons identifies large duplication events in the molecular evolution of the insulin-relaxin gene family.
    Olinski RP; Lundin LG; Hallböök F
    Mol Biol Evol; 2006 Jan; 23(1):10-22. PubMed ID: 16135778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic evolution of transient receptor potential vanilloid (TRPV) ion channel family with numerous gene duplications and losses.
    Morini M; Bergqvist CA; Asturiano JF; Larhammar D; Dufour S
    Front Endocrinol (Lausanne); 2022; 13():1013868. PubMed ID: 36387917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes.
    Singh PP; Arora J; Isambert H
    PLoS Comput Biol; 2015 Jul; 11(7):e1004394. PubMed ID: 26181593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential loss and retention of cytoglobin, myoglobin, and globin-E during the radiation of vertebrates.
    Hoffmann FG; Opazo JC; Storz JF
    Genome Biol Evol; 2011; 3():588-600. PubMed ID: 21697098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolution of pepsinogen C genes in vertebrates: duplication, loss and functional diversification.
    Castro LF; Lopes-Marques M; Gonçalves O; Wilson JM
    PLoS One; 2012; 7(3):e32852. PubMed ID: 22427897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary significance and diversification of the phosphoglucose isomerase genes in vertebrates.
    Tine M
    BMC Res Notes; 2015 Dec; 8():799. PubMed ID: 26682538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of gene duplication and unconstrained selective pressures in the melanopsin gene family evolution and vertebrate circadian rhythm regulation.
    Borges R; Johnson WE; O'Brien SJ; Vasconcelos V; Antunes A
    PLoS One; 2012; 7(12):e52413. PubMed ID: 23285031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ancient Duplications and Expression Divergence in the Globin Gene Superfamily of Vertebrates: Insights from the Elephant Shark Genome and Transcriptome.
    Opazo JC; Lee AP; Hoffmann FG; Toloza-Villalobos J; Burmester T; Venkatesh B; Storz JF
    Mol Biol Evol; 2015 Jul; 32(7):1684-94. PubMed ID: 25743544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary rate variation among vertebrate beta globin genes: implications for dating gene family duplication events.
    Aguileta G; Bielawski JP; Yang Z
    Gene; 2006 Sep; 380(1):21-9. PubMed ID: 16843621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates.
    Brunet FG; Volff JN; Schartl M
    Genome Biol Evol; 2016 Jun; 8(5):1600-13. PubMed ID: 27260203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of the Rax family of developmental transcription factors in vertebrates.
    Orquera DP; de Souza FSJ
    Mech Dev; 2017 Apr; 144(Pt B):163-170. PubMed ID: 27838261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of the vertebrate insulin receptor substrate (Irs) gene family.
    Al-Salam A; Irwin DM
    BMC Evol Biol; 2017 Jun; 17(1):148. PubMed ID: 28645244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary genomics and adaptive evolution of the Hedgehog gene family (Shh, Ihh and Dhh) in vertebrates.
    Pereira J; Johnson WE; O'Brien SJ; Jarvis ED; Zhang G; Gilbert MT; Vasconcelos V; Antunes A
    PLoS One; 2014; 9(12):e74132. PubMed ID: 25549322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Insights Into the Evolutionary History of Melatonin Receptors in Vertebrates, With Particular Focus on Teleosts.
    Maugars G; Nourizadeh-Lillabadi R; Weltzien FA
    Front Endocrinol (Lausanne); 2020; 11():538196. PubMed ID: 33071966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection on coding regions determined Hox7 genes evolution.
    Fares MA; Bezemer D; Moya A; Marín I
    Mol Biol Evol; 2003 Dec; 20(12):2104-12. PubMed ID: 12949154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ancient duplications and functional divergence in the interferon regulatory factors of vertebrates provide insights into the evolution of vertebrate immune systems.
    Du K; Zhong Z; Fang C; Dai W; Shen Y; Gan X; He S
    Dev Comp Immunol; 2018 Apr; 81():324-333. PubMed ID: 29253557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.