BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 27432117)

  • 1. Genetic and Environmental Models of Circadian Disruption Link SRC-2 Function to Hepatic Pathology.
    Fleet T; Stashi E; Zhu B; Rajapakshe K; Marcelo KL; Kettner NM; Gorman BK; Coarfa C; Fu L; O'Malley BW; York B
    J Biol Rhythms; 2016 Oct; 31(5):443-60. PubMed ID: 27432117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shifting eating to the circadian rest phase misaligns the peripheral clocks with the master SCN clock and leads to a metabolic syndrome.
    Mukherji A; Kobiita A; Damara M; Misra N; Meziane H; Champy MF; Chambon P
    Proc Natl Acad Sci U S A; 2015 Dec; 112(48):E6691-8. PubMed ID: 26627260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SRC-2 is an essential coactivator for orchestrating metabolism and circadian rhythm.
    Stashi E; Lanz RB; Mao J; Michailidis G; Zhu B; Kettner NM; Putluri N; Reineke EL; Reineke LC; Dasgupta S; Dean A; Stevenson CR; Sivasubramanian N; Sreekumar A; Demayo F; York B; Fu L; O'Malley BW
    Cell Rep; 2014 Feb; 6(4):633-45. PubMed ID: 24529706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of chronic jet lag on the central and peripheral circadian clocks in CBA/N mice.
    Iwamoto A; Kawai M; Furuse M; Yasuo S
    Chronobiol Int; 2014 Mar; 31(2):189-98. PubMed ID: 24147659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian Homeostasis of Liver Metabolism Suppresses Hepatocarcinogenesis.
    Kettner NM; Voicu H; Finegold MJ; Coarfa C; Sreekumar A; Putluri N; Katchy CA; Lee C; Moore DD; Fu L
    Cancer Cell; 2016 Dec; 30(6):909-924. PubMed ID: 27889186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced light-entrained activity onsets and restored free-running suprachiasmatic nucleus circadian rhythms in per2/dec mutant mice.
    Bode B; Taneja R; Rossner MJ; Oster H
    Chronobiol Int; 2011 Nov; 28(9):737-50. PubMed ID: 22080784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian rhythms: a possible new player in non-alcoholic fatty liver disease pathophysiology.
    Gnocchi D; Custodero C; Sabbà C; Mazzocca A
    J Mol Med (Berl); 2019 Jun; 97(6):741-759. PubMed ID: 30953079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian dysfunction induces NAFLD-related human liver cancer in a mouse model.
    Padilla J; Osman NM; Bissig-Choisat B; Grimm SL; Qin X; Major AM; Yang L; Lopez-Terrada D; Coarfa C; Li F; Bissig KD; Moore DD; Fu L
    J Hepatol; 2024 Feb; 80(2):282-292. PubMed ID: 37890720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gut clock: implication of circadian rhythms in the gastrointestinal tract.
    Konturek PC; Brzozowski T; Konturek SJ
    J Physiol Pharmacol; 2011 Apr; 62(2):139-50. PubMed ID: 21673361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the Circadian Clock in the Metabolic Syndrome and Nonalcoholic Fatty Liver Disease.
    Shetty A; Hsu JW; Manka PP; Syn WK
    Dig Dis Sci; 2018 Dec; 63(12):3187-3206. PubMed ID: 30121811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restricted feeding regime affects clock gene expression profiles in the suprachiasmatic nucleus of rats exposed to constant light.
    Nováková M; Polidarová L; Sládek M; Sumová A
    Neuroscience; 2011 Dec; 197():65-71. PubMed ID: 21952132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-alcoholic fatty liver disease: the role of nuclear receptors and circadian rhythmicity.
    Mazzoccoli G; Vinciguerra M; Oben J; Tarquini R; De Cosmo S
    Liver Int; 2014 Sep; 34(8):1133-52. PubMed ID: 24649929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diverse development and higher sensitivity of the circadian clocks to changes in maternal-feeding regime in a rat model of cardio-metabolic disease.
    Olejníková L; Polidarová L; Paušlyová L; Sládek M; Sumová A
    Chronobiol Int; 2015 May; 32(4):531-47. PubMed ID: 25839096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian rhythmicity of active GSK3 isoforms modulates molecular clock gene rhythms in the suprachiasmatic nucleus.
    Besing RC; Paul JR; Hablitz LM; Rogers CO; Johnson RL; Young ME; Gamble KL
    J Biol Rhythms; 2015 Apr; 30(2):155-60. PubMed ID: 25724980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic jet lag impairs startle-induced locomotion in Drosophila.
    Vaccaro A; Birman S; Klarsfeld A
    Exp Gerontol; 2016 Dec; 85():24-27. PubMed ID: 27639775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian Clock Control of Liver Metabolic Functions.
    Reinke H; Asher G
    Gastroenterology; 2016 Mar; 150(3):574-80. PubMed ID: 26657326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Embryonic development and maternal regulation of murine circadian clock function.
    Landgraf D; Achten C; Dallmann F; Oster H
    Chronobiol Int; 2015 Apr; 32(3):416-27. PubMed ID: 25431080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Period-independent novel circadian oscillators revealed by timed exercise and palatable meals.
    Flôres DE; Bettilyon CN; Yamazaki S
    Sci Rep; 2016 Feb; 6():21945. PubMed ID: 26904978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock.
    Husse J; Leliavski A; Tsang AH; Oster H; Eichele G
    FASEB J; 2014 Nov; 28(11):4950-60. PubMed ID: 25063847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peripheral circadian clocks--a conserved phenotype?
    Weigl Y; Harbour VL; Robinson B; Dufresne L; Amir S
    Chronobiol Int; 2013 May; 30(4):559-76. PubMed ID: 23425359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.